跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/04 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭宜幸
研究生(外文):Yi-Sin Cheng
論文名稱:具嵌入式布拉格反射鏡之氮化銦鎵微型柱狀陣列光電元件
論文名稱(外文):InGaN Micro-Rod Array Optoelectronic Devices with Embedded Bragg Reflector
指導教授:林佳鋒林佳鋒引用關係
指導教授(外文):Chia-Feng Lin
口試委員:紀國鐘譚昌琳
口試日期:2024-05-30
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:38
中文關鍵詞:氮化鎵離子佈植微型柱狀結構布拉格反射鏡
外文關鍵詞:Gallium Nitride (GaN)Ion implantMicro-rod structureDistributed Bragg Reflector(DBR)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以氮化鎵為基底材料,製作出嵌入式布拉格反射鏡之氮化銦鎵微型柱狀陣列發光二極體。利用有機金屬化學氣相沉積與選擇性摻雜技術成長發光二極體與25對高低摻雜濃度的氮化鎵磊晶層於圖案化藍寶石基板上,透過黃光微影技術及感應耦合電漿定義發光圖案,接著透過離子佈植技術使電流侷限,在製備反射鏡的部分,以高功率355 nm脈衝式雷射切割至反射鏡底層,接著透由選擇性蝕刻將磊晶層轉變為多孔隙布拉格反射鏡。結果發現經電化學濕式蝕刻發光二極體,反射鏡中心波長位於綠光波段544 nm,反射率高達98.68 %,在電激發螢光光譜中觀察到,經蝕刻成柱狀結構的Rod-DBR-LED,中心波長由533.6 nm藍移至508.6 nm與410.7 nm處,而Rod-LED則為506.3 nm與408.7 nm。在綠光波段中,DBR-Rod-LED光強度為DBR-LED的1.7倍,而DBR-Rod-LED光強度為ROD-LED的1.9倍。而在藍光波段中,Rod-DBR-LED光強度為Rod-LED的1.2倍。在變角度解析電激發光光譜量測中,以Rod-DBR-LED的光型最為集中且具較窄的發散角。
In this study, we fabricated micro-rod arrays of indium gallium nitride (InGaN) light-emitting diodes (LEDs) with embedded Bragg reflectors on a gallium nitride (GaN) substrate. Using metalorganic chemical vapor deposition (MOCVD) and selective doping techniques, we grew LEDs and 25 pairs of gallium nitride (GaN) epitaxial layers with alternating doping concentrations on a patterned sapphire substrate. We then used photolithography and inductively coupled plasma to define the emission patterns, followed by ion implantation to achieve current confinement.
For the preparation of the DBR reflector, a high-power 355 nm pulsed laser was used to cut down to the bottom layer of the reflector, and selective etching was employed to transform the epitaxial layer into a porous Bragg reflector. The results showed that the center wavelength of the reflector in the green light band is 544 nm, with a reflectivity as high as 98.68%, after performing electrochemical wet etching on the light-emitting diode. In the electroluminescence spectrum, it was observed that for the etched rod structure Rod-DBR-LED, the center wavelength blue-shifted from 533.6 nm to 508.6 nm and 410.7 nm, while for the Rod-LED, it was 506.3 nm and 408.7 nm. In the green light band, the intensity of the DBR-Rod-LED is 1.7 times that of the DBR-LED. However, the intensity of the DBR-Rod-LED is 1.9 times that of the Rod-LED. In the blue light band, the intensity of the Rod-DBR-LED is 1.2 times that of the Rod-LED. In the angle-resolved electroluminescence spectrum measurements, the light pattern of the Rod-DBR-LED was the most focused with a narrower divergence angle.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
第1章 緒論 1
1.1 前言 1
1.2 III族氮化物材料 1
1.3 研究動機 2
第2章 文獻回顧 4
2.1 量子侷限效應 4
2.2 布拉格反射鏡種類 5
2.2.1 空氣間隙型反射鏡 5
2.2.2 介電質布拉格反射鏡 6
2.2.3 多孔隙型布拉格反射鏡 7
2.2.4 磊晶型布拉格反射鏡 8
2.2.5 光激發奈米柱LEDs 9
2.2.6 電激發奈米柱LEDs 10
2.2.7 電激發Micro-LED 11
第3章 實驗方法 14
3.1 實驗設計與流程 14
3.2 試片製備流程 15
3.3 樣品製備儀器 18
3.3.1 雷射切割系統(Laserscribin system,LS) 18
3.3.2 電化學濕式蝕刻 19
3.3.3 離子佈植(Ion implanter) 20
3.3.4 電子束蒸鍍系統 20
3.3.5 黄光微影製程技術(Photolithography) 21
3.3.6 感應耦合電漿蝕刻(Inductively Coupled Plasma Etching) 22
3.4 樣品分析儀器 22
3.4.1 光學顯微鏡(Optical Microscope, OM) 22
3.4.2 微區反射率(u-Reflectivity) 23
3.4.3 聚焦離子束(Focused Ion Beam,FIB) 24
3.4.4 高解析度穿透式電子顯微鏡(HRTEM) 24
3.4.5 電激發螢光光譜(Electroluminescence,EL)25
3.4.6 電激發螢光遠場光譜量測 26
第4章 實驗結果與討論 27
4.1 布拉格反射鏡之表面形貌 27
4.2 電子顯微鏡之橫截面微結構分析 28
4.2.1 布拉格反射鏡之橫截面微結構 28
4.2.2 微型柱狀陣列之橫截面微結構 29
4.3 布拉格反射鏡之反射率 29
4.4 反射鏡之反射光譜分析 30
4.4.1 發光元件之電激發螢光光譜 30
4.4.2 發光元件之電激發螢光遠場光輻射圖 32
第5章 結論與未來展望 34
5.1 結論 34
5.2 未來展望 34
文獻回顧 36
1.Jiang, H.X. and J.Y. Lin, Nitride micro-LEDs and beyond--a decade progress review. Opt Express, 2013. 21 Suppl 3: p. A475-84.
2.Bergh, A., et al., The Promise and Challenge of Solid-State Lighting. Physics Today, 2001. 54(12): p. 42-47.
3.Zhang, Y., et al., Recent Advances on GaN-Based Micro-LEDs. Micromachines (Basel), 2023. 14(5).
4.Wierer, J.J. and N. Tansu, III‐Nitride Micro‐LEDs for Efficient Emissive Displays. Laser & Photonics Reviews, 2019. 13(9).
5.Lu, T., et al., High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication. Opto-Electronic Science, 2022. 1(12): p. 220020-220020.
6.Zhou, C., et al., Review—The Current and Emerging Applications of the III-Nitrides. ECS Journal of Solid State Science and Technology, 2017. 6(12): p. Q149-Q156.
7.Baten, M.Z., et al., III-Nitride Light-Emitting Devices. Photonics, 2021. 8(10).
8.Day, J., et al., III-Nitride full-scale high-resolution microdisplays. Applied Physics Letters, 2011. 99(3).
9.Horng, R.H., et al., Characterization of semi-polar (20[Formula: see text]1) InGaN microLEDs. Sci Rep, 2020. 10(1): p. 15966.
10.Wong, M.S., et al., High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt Express, 2018. 26(16): p. 21324-21331.
11.Manasreh, M.O., III-nitride semiconductors: electrical, structural and defects properties. 2000.
12.Heilmeier, G.H., L.A. Zanoni, and L.A. Barton, Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals. Proceedings of the IEEE, 1968. 56(7): p. 1162-1171.
13.Schadt, M. and W. Helfrich, Voltage‐dependent optical activity of a twisted nematic liquid crystal. Applied Physics Letters, 1971. 18(4): p. 127-128.
14.Schiekel, M. and K. Fahrenschon, Deformation of nematic liquid crystals with vertical orientation in electrical fields. Applied Physics Letters, 1971. 19(10): p. 391-393.
15.Soref, R., Transverse field effects in nematic liquid crystals. Applied Physics Letters, 1973. 22(4): p. 165-166.
16.Huang, Y., et al., Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci Appl, 2020. 9: p. 105.
17.Liou, C., et al., The Implementation of Sapphire Microreflector for Monolithic Micro-LED Array. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021. 11(2): p. 181-190.
18.Liu, H., et al., Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes. Chinese Physics B, 2019. 28(12): p. 128504.
19.Divsar, F., Quantum Quantum dotsdots:fundamental and applications. 2020: BoD-Books on Demand.
20.Du, Z.F., et al., Ultrahigh Color Conversion Efficiency Nano-Light-Emitting Diode With Single Electrical Contact. Ieee Transactions on Electron Devices, 2023. 70(3): p. 1156-1161.
21.Ryu, J.H., et al., High performance of InGaN light-emitting diodes by air-gap/GaN distributed Bragg reflectors. Opt Express, 2012. 20(9): p. 9999-10003.
22.Lin, C.C. and C.T. Lee, GaN-Based Resonant-Cavity Light-Emitting Diodes With Top and Bottom Dielectric Distributed Bragg Reflectors. Ieee Photonics Technology Letters, 2010. 22(17): p. 1291-1293.
23.Wang, C.-J., et al., InGaN Resonant-Cavity Light-Emitting Diodes with Porous and Dielectric Reflectors. Applied Sciences, 2020. 11(1).
24.Zhang, C., et al., Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as an Example. ACS Photonics, 2015. 2(7): p. 980-986.
25.Akagi, T., et al., High-quality AlInN/GaN distributed Bragg reflectors grown by metalorganic vapor phase epitaxy. Applied Physics Express, 2020. 13(12).
26.Chun, S.Y., et al., Dual wavelength lasing of InGaN/GaN axial-heterostructure nanorod lasers. Nanoscale, 2019. 11(30): p. 14186-14193.
27.Min-Yung, K., et al., Application of Nanosphere Lithography to LED Surface Texturing and to the Fabrication of Nanorod LED Arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2009. 15(4): p. 1242-1249.
28.Chan, L., et al., Fabrication and chemical lift-off of sub-micron scale III-nitride LED structures. Opt Express, 2020. 28(23): p. 35038-35046.
29.Zhu, S., et al., Characteristics of GaN-on-Si Green Micro-LED for Wide Color Gamut Display and High-Speed Visible Light Communication. ACS Photonics, 2022. 10(1): p. 92-100.
30.Yu, L., et al., Ultra-small size (1–20 μm) blue and green micro-LEDs fabricated by laser direct writing lithography. Applied Physics Letters, 2022. 121(4).
31.Horng, R.H., et al., Study on the effect of size on InGaN red micro-LEDs. Sci Rep, 2022. 12(1): p. 1324.
32.Olivier, F., et al., Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. Journal of Luminescence, 2017. 191: p. 112-116.
33.Wang, K., et al., Alternating current electroluminescence from GaN-based nanorod light-emitting diodes. Optics & Laser Technology, 2021. 140: p. 107044.
34.Wang, C.-H., et al., Is it viable to improve light output efficiency by nano-light-emitting diodes? Applied Physics Letters, 2013. 103(23).
35.Zhi, T., et al., Polarized Emission From InGaN/GaN Single Nanorod Light-Emitting Diode. IEEE Photonics Technology Letters, 2016. 28(7): p. 721-724.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊