|
[1]蔡松祐, 以刮刀塗佈技術製造具導電特性之波浪狀緞帶皺褶結構. 2019. [2]T. L. Chen, C. Y. Huang, Y. T. Xie, Y. Y. Chiang, Y. M. Chen, H. Y. Hsueh. Bioinspired Durable Superhydrophobic Surface from a Hierarchically Wrinkled Nanoporous Polymer. ACS Appl Mater Interfaces 2019, 11, 40875-40885. [3]T. L. Chen, Y. P. Lin, C. H. Chien, Y. C. Chen, Y. J. Yang, W. L. Wang, L. F. Chien, H. Y. Hsueh. Fabrication of Frog‐Skin‐Inspired Slippery Antibiofouling Coatings Through Degradable Block Copolymer Wrinkling. Advanced Functional Materials 2021, 31. [4]C. H. Lin, C. Y. Huang, J. Y. Ho, H. Y. Hsueh. Symmetrical Wrinkles in Single-Component Elastomers with Fingerprint-Inspired Robust Isotropic Dry Adhesive Capabilities. ACS Appl Mater Interfaces 2020, 12, 22365-22377. [5]K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer. Nested self-similar wrinkling patterns in skins. Nature Materials 2005, 4, 293-297. [6]H. Q. Jiang, D. Y. Khang, J. Z. Song, Y. G. Sun, Y. G. Huang, J. A. Rogers. Finite deformation mechanics in buckled thin films on compliant supports. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, 15607-15612. [7]L. Pocivavsek, R. Dellsy, A. Kern, S. Johnson, B. H. Lin, K. Y. C. Lee, E. Cerda. Stress and fold localization in thin elastic membranes. Science 2008, 320, 912-916. [8]M. Guvendiren, S. Yang, J. A. Burdick. Swelling-Induced Surface Patterns in Hydrogels with Gradient Crosslinking Density. Advanced Functional Materials 2009, 19, 3038-3045. [9]J. Y. Chung, A. J. Nolte, C. M. Stafford. Diffusion-Controlled, Self-Organized Growth of Symmetric Wrinkling Patterns. Advanced Materials 2009, 21, 1358-1362. [10]H. Nishimori, N. Ouchi. FORMATION OF RIPPLE PATTERNS AND DUNES BY WIND-BLOWN SAND. Physical Review Letters 1993, 71, 197-200. [11]N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, G. M. Whitesides. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146-149. [12]Q. Wang, X. Zhao. Phase Diagrams of Instabilities in Compressed Film-Substrate Systems. J Appl Mech 2014, 81, 0510041-5100410. [13]Q. Wang, X. Zhao. A three-dimensional phase diagram of growth-induced surface instabilities. Sci Rep 2015, 5, 8887. [14]J. Y. Chung, A. J. Nolte, C. M. Stafford. Surface Wrinkling: A Versatile Platform for Measuring Thin-Film Properties. Advanced Materials 2011, 23, 349-368. [15]Y. Rahmawan, C. M. Chen, S. Yang. Recent advances in wrinkle-based dry adhesion. Soft Matter 2014, 10, 5028-5039. [16]S. Yang, K. Khare, P. C. Lin. Harnessing Surface Wrinkle Patterns in Soft Matter. Advanced Functional Materials 2010, 20, 2550-2564. [17]H. S. Kim, A. J. Crosby. Solvent-Responsive Surface via Wrinkling Instability. Advanced Materials 2011, 23, 4188-+. [18]H. Y. Hsueh, M. S. Chen, C. Y. Liaw, Y. C. Chen, A. J. Crosby. Macroscopic Geometry-Dominated Orientation of Symmetric Microwrinkle Patterns. Acs Applied Materials & Interfaces 2019, 11, 23741-23749. [19]N. Bowden, W. T. S. Huck, K. E. Paul, G. M. Whitesides. The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Applied Physics Letters 1999, 75, 2557-2559. [20]Y. Ebata, A. J. Crosby. Wrinkling membranes with compliant boundaries. Soft Matter 2014, 10, 1963-8. [21]Y. Huang, H. Chen, J. Wu, X. Feng. Controllable wrinkle configurations by soft micro-patterns to enhance the stretchability of Si ribbons. Soft Matter 2014, 10, 2559-2566. [22]C. Wang, C. Wang, Z. Huang, S. Xu. Materials and Structures toward Soft Electronics. Adv Mater 2018, 30, e1801368. [23]D. Qi, K. Zhang, G. Tian, B. Jiang, Y. Huang. Stretchable Electronics Based on PDMS Substrates. Adv Mater 2021, 33, e2003155. [24]G. Lee, M. Zarei, Q. Wei, Y. Zhu, S. G. Lee. Surface Wrinkling for Flexible and Stretchable Sensors. Small 2022, 18, e2203491. [25]W. Dang, V. Vinciguerra, L. Lorenzelli, R. Dahiya. Printable stretchable interconnects. Flexible and Printed Electronics 2017, 2. [26]J. Tang, H. Guo, M. Chen, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, W. Zhang. Wrinkled Ag nanostructured gratings towards single molecule detection by ultrahigh surface Raman scattering enhancement. Sensors and Actuators B: Chemical 2015, 218, 145-151. [27]H. J. Bae, S. Bae, C. Park, S. Han, J. Kim, L. N. Kim, K. Kim, S. H. Song, W. Park, S. Kwon. Biomimetic microfingerprints for anti-counterfeiting strategies. Adv Mater 2015, 27, 2083-9. [28]H. Ryu, S. J. Cho, B. Kim, G. Lim. A stretchable humidity sensor based on a wrinkled polyaniline nanostructure. RSC Adv. 2014, 4. [29]D. Y. Khang, H. Q. Jiang, Y. Huang, J. A. Rogers. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208-212. [30]Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, J. A. Rogers. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 2006, 1, 201-7. [31]Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, G. Zhang. Super-Elastic Graphene Ripples for Flexible Strain Sensors. ACS Nano 2011, 5, 3645-3650. [32]D. Y. Khang, J. L. Xiao, C. Kocabas, S. Maclaren, T. Banks, H. Q. Jiang, Y. Y. G. Huang, J. A. Rogers. Molecular scale buckling mechanics on individual aligned single-wall carbon nanotubes on elastomeric substrates. Nano Letters 2008, 8, 124-130. [33]F. Xu, X. Wang, Y. T. Zhu, Y. Zhu. Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors. Advanced Functional Materials 2012, 22, 1279-1283. [34]H. Shirakawa. The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture). Angewandte Chemie International Edition 2001, 40, 2574-2580. [35]A. G. Macdiarmid. “Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture). Angewandte Chemie International Edition 2001, 40, 2581-2590. [36]A. J. Heeger. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture). Angewandte Chemie International Edition 2001, 40, 2591-2611. [37]M. X. Wan, J. P. Yang. MECHANISM OF PROTON DOPING IN POLYANILINE. Journal of Applied Polymer Science 1995, 55, 399-405. [38]J. Xie, X. Han, C. Zong, H. Ji, C. Lu. Large-Area Patterning of Polyaniline Film Based on in Situ Self-Wrinkling and Its Reversible Doping/Dedoping Tunability. Macromolecules 2015, 48, 663-671. [39]J. Xie, C. Zong, X. Han, H. Ji, J. Wang, X. Yang, C. Lu. Redox-Switchable Surface Wrinkling on Polyaniline Film. Macromol Rapid Commun 2016, 37, 637-42. [40]J. Xie, X. Han, H. Ji, J. Wang, J. Zhao, C. Lu. Self-Supported Crack-Free Conducting Polymer Films with Stabilized Wrinkling Patterns and Their Applications. Sci Rep 2016, 6, 36686. [41]J. Xie, J. Wang, J. Zhao, C. Yang, L. Li, C. Lu. Synergism of Self‐Wrinkling and Ultrasonic Cleaning to Fabricate Hierarchically Patterned Conducting Films. Advanced Materials Interfaces 2018, 5. [42]W.-B. Liau, Y.-T. Sun, L.-Y. Yang, L.-Y. Wang, W.-Y. Chiu, K.-H. Hsieh, S.-M. Tseng. Morphology and characterization of conductive films based on polyaniline-coated polystyrene latexes. Journal of Applied Polymer Science 2006, 102, 5406-5413. [43]Q. Wu, Z. Wang, G. Xue. Controlling the Structure and Morphology of Monodisperse Polystyrene/Polyaniline Composite Particles. Advanced Functional Materials 2007, 17, 1784-1789. [44]E.-C. Chen, Y.-W. Lin, T.-M. Wu. Fabrication, morphology and thermal degradation behaviors of conductive polyaniline coated monodispersed polystyrene particles. Polymer Degradation and Stability 2009, 94, 550-557. [45]Y. M. Abu, K. Aoki. Corrosion protection by polyaniline-coated latex microspheres. Journal of Electroanalytical Chemistry 2005, 583, 133-139. [46]S. Bhattarai, J. S. Kim, Y.-S. Yun, Y.-S. Lee. Preparation of polyaniline-coated polystyrene nanoparticles for the sorption of silver ions. Reactive and Functional Polymers 2016, 105, 52-59. [47]M. Matsuguchi, T. Nakamae, R. Fujisada, S. Shiba. A Highly Sensitive Ammonia Gas Sensor Using Micrometer-Sized Core-Shell-Type Spherical Polyaniline Particles. Sensors (Basel) 2021, 21. [48]Y. Zheng, Q. Jin, W. Chen, Y. Sun, Z. Wang. High sensitivity and wide sensing range of stretchable sensors with conductive microsphere array structures. Journal of Materials Chemistry C 2019, 7, 8423-8431. [49]X. Liu, X. Liang, Z. Lin, Z. Lei, Y. Xiong, Y. Hu, P. Zhu, R. Sun, C. P. Wong. Highly Sensitive and Stretchable Strain Sensor Based on a Synergistic Hybrid Conductive Network. ACS Appl Mater Interfaces 2020, 12, 42420-42429. [50]R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827-829. [51]Y. Li, Q. Yang, M. Li, Y. Song. Rate-dependent interface capture beyond the coffee-ring effect. Sci Rep 2016, 6, 24628. [52]A. M. J. Edwards, R. Ledesma-Aguilar, M. I. Newton, C. V. Brown, G. Mchale. Not spreading in reverse: The dewetting of a liquid film into a single drop. Science Advances 2016, 2, 10. [53]W. Han, Z. Lin. Learning from "coffee rings": ordered structures enabled by controlled evaporative self-assembly. Angew Chem Int Ed Engl 2012, 51, 1534-46. [54]C.-Y. Jao, B. A. Magill, K. Chen, E. M. See, H. D. Robinson. Enhanced Multiphoton-Induced Luminescence in Silver Nanoparticles Fabricated with Nanosphere Lithography. Plasmonics 2014, 10, 87-98. [55]H.-F. Tseng, M.-H. Cheng, J.-W. Li, J.-T. Chen. Solvent On-Film Annealing (SOFA): Morphological Evolution of Polymer Particles on Polymer Films via Solvent Vapor Annealing. Macromolecules 2017, 50, 5114-5121. [56]H.-F. Tseng, X. Liang, C.-T. Liu, Y.-J. Chiu, J.-W. Li, H.-H. Hsu, K.-C. Chang, K. Nakajima, J.-T. Chen. Sequential Selective Solvent On-Film Annealing: Fabrication of Monolayers of Ordered Anisotropic Polymer Particles. ACS Applied Materials & Interfaces 2020, 12, 35731-35739. [57]L. Y. Wang, Y. J. Lin, W. Y. Chiu. Synthesis and properties of monodisperse conductive core-shell latexes. Synthetic Metals 2001, 119, 155-156. [58]M. Okubo, S. Fujii, H. Minami. Production of electrically conductive, core/shell polystyrene/polyaniline composite particles by chemical oxidative seeded dispersion polymerization. Colloid and Polymer Science 2001, 279, 139-145.
|