跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 09:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭智升
研究生(外文):Chih-Sheng Hsiao
論文名稱:刮刀塗佈法製備導電核殼粒子組成之波浪緞帶彈性導電結構
論文名稱(外文):Fabrication of Wavy Ribbon Elastic Conductive Structure Composed of Conductive Core-Shell Particles via Flow Coating
指導教授:薛涵宇
指導教授(外文):Han-Yu Hsueh
口試委員:何榮銘蔣酉旺李明家林子楓王孝方
口試委員(外文):Rong-Ming HoYeo-Wan ChiangMing-Chia LiTz-Feng LinHsiao-Fang Wang
口試日期:2024-06-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:90
中文關鍵詞:可拉伸電子濕式製程刮刀塗佈波浪緞帶皺褶導電核殼粒子
外文關鍵詞:stretchable electronicswet processflow coatingwavy ribbonconductive core-shell particles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目標 1
第二章 文獻回顧 2
2.1 皺褶結構(Wrinkle) 2
2.1.1 仿生皺褶結構 2
2.1.2 皺褶形成理論 4
2.1.3 皺褶理論公式 7
2.1.4 皺褶製備方式 10
2.2 波浪緞帶皺褶結構(Wavy ribbon) 16
2.2.1 皺褶的幾何侷限效應 16
2.2.2 波浪緞帶皺褶結構的製備 18
2.3 可拉伸電子(Stretchable electronics) 20
2.3.1 可拉伸電子的概況 20
2.3.2 皺褶化之可拉伸電子 22
2.3.3 波浪緞帶皺褶應用於可拉伸電子 24
2.4 導電高分子:聚苯胺(Polyaniline) 28
2.4.1 導電高分子的發展史 28
2.4.2 導電聚合物的導電原理 29
2.4.3 本質性導電聚合物:聚苯胺 30
2.4.4 聚苯胺表面皺褶結構 32
2.4.5 聚苯胺衍生物:聚苯乙烯/聚苯胺核殼粒子 34
2.4.6 導電性核殼粒子應用於軟性電子 36
2.5 蒸發誘導自組裝(Evaporation induced self-assembly) 38
2.5.1 咖啡環效應 38
2.5.2 刮刀塗佈技術 40
2.6 溶劑蒸氣退火法(Solvent vapor annealing method) 43
第三章 實驗方法 44
3.1 實驗藥品 44
3.2 實驗儀器 45
3.3 實驗流程 53
3.3.1 玻璃基板清潔與表面改質 53
3.3.2 犧牲層與軟質層溶液配製 53
3.3.3 波浪緞帶皺褶結構之製備 54
第四章 結果與討論 56
4.1 刮刀塗佈技術之探討分析 56
4.2 PS微球之波浪緞帶皺褶結構 59
4.2.1 合成單分散PS微球 59
4.2.2 製備PS微球之波浪緞帶皺褶 61
4.2.3 參數控制與表面形貌觀察 65
4.3 PS/PANI核殼粒子之波浪緞帶皺褶結構 71
4.3.1 合成PS/PANI核殼粒子 71
4.3.2 製備核殼粒子之波浪緞帶皺褶 76
4.4 導電核殼粒子波浪緞帶皺褶結構之電氣性質 81
第五章 結論 83
第六章 參考文獻 84
[1]蔡松祐, 以刮刀塗佈技術製造具導電特性之波浪狀緞帶皺褶結構. 2019.
[2]T. L. Chen, C. Y. Huang, Y. T. Xie, Y. Y. Chiang, Y. M. Chen, H. Y. Hsueh. Bioinspired Durable Superhydrophobic Surface from a Hierarchically Wrinkled Nanoporous Polymer. ACS Appl Mater Interfaces 2019, 11, 40875-40885.
[3]T. L. Chen, Y. P. Lin, C. H. Chien, Y. C. Chen, Y. J. Yang, W. L. Wang, L. F. Chien, H. Y. Hsueh. Fabrication of Frog‐Skin‐Inspired Slippery Antibiofouling Coatings Through Degradable Block Copolymer Wrinkling. Advanced Functional Materials 2021, 31.
[4]C. H. Lin, C. Y. Huang, J. Y. Ho, H. Y. Hsueh. Symmetrical Wrinkles in Single-Component Elastomers with Fingerprint-Inspired Robust Isotropic Dry Adhesive Capabilities. ACS Appl Mater Interfaces 2020, 12, 22365-22377.
[5]K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer. Nested self-similar wrinkling patterns in skins. Nature Materials 2005, 4, 293-297.
[6]H. Q. Jiang, D. Y. Khang, J. Z. Song, Y. G. Sun, Y. G. Huang, J. A. Rogers. Finite deformation mechanics in buckled thin films on compliant supports. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, 15607-15612.
[7]L. Pocivavsek, R. Dellsy, A. Kern, S. Johnson, B. H. Lin, K. Y. C. Lee, E. Cerda. Stress and fold localization in thin elastic membranes. Science 2008, 320, 912-916.
[8]M. Guvendiren, S. Yang, J. A. Burdick. Swelling-Induced Surface Patterns in Hydrogels with Gradient Crosslinking Density. Advanced Functional Materials 2009, 19, 3038-3045.
[9]J. Y. Chung, A. J. Nolte, C. M. Stafford. Diffusion-Controlled, Self-Organized Growth of Symmetric Wrinkling Patterns. Advanced Materials 2009, 21, 1358-1362.
[10]H. Nishimori, N. Ouchi. FORMATION OF RIPPLE PATTERNS AND DUNES BY WIND-BLOWN SAND. Physical Review Letters 1993, 71, 197-200.
[11]N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, G. M. Whitesides. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146-149.
[12]Q. Wang, X. Zhao. Phase Diagrams of Instabilities in Compressed Film-Substrate Systems. J Appl Mech 2014, 81, 0510041-5100410.
[13]Q. Wang, X. Zhao. A three-dimensional phase diagram of growth-induced surface instabilities. Sci Rep 2015, 5, 8887.
[14]J. Y. Chung, A. J. Nolte, C. M. Stafford. Surface Wrinkling: A Versatile Platform for Measuring Thin-Film Properties. Advanced Materials 2011, 23, 349-368.
[15]Y. Rahmawan, C. M. Chen, S. Yang. Recent advances in wrinkle-based dry adhesion. Soft Matter 2014, 10, 5028-5039.
[16]S. Yang, K. Khare, P. C. Lin. Harnessing Surface Wrinkle Patterns in Soft Matter. Advanced Functional Materials 2010, 20, 2550-2564.
[17]H. S. Kim, A. J. Crosby. Solvent-Responsive Surface via Wrinkling Instability. Advanced Materials 2011, 23, 4188-+.
[18]H. Y. Hsueh, M. S. Chen, C. Y. Liaw, Y. C. Chen, A. J. Crosby. Macroscopic Geometry-Dominated Orientation of Symmetric Microwrinkle Patterns. Acs Applied Materials & Interfaces 2019, 11, 23741-23749.
[19]N. Bowden, W. T. S. Huck, K. E. Paul, G. M. Whitesides. The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Applied Physics Letters 1999, 75, 2557-2559.
[20]Y. Ebata, A. J. Crosby. Wrinkling membranes with compliant boundaries. Soft Matter 2014, 10, 1963-8.
[21]Y. Huang, H. Chen, J. Wu, X. Feng. Controllable wrinkle configurations by soft micro-patterns to enhance the stretchability of Si ribbons. Soft Matter 2014, 10, 2559-2566.
[22]C. Wang, C. Wang, Z. Huang, S. Xu. Materials and Structures toward Soft Electronics. Adv Mater 2018, 30, e1801368.
[23]D. Qi, K. Zhang, G. Tian, B. Jiang, Y. Huang. Stretchable Electronics Based on PDMS Substrates. Adv Mater 2021, 33, e2003155.
[24]G. Lee, M. Zarei, Q. Wei, Y. Zhu, S. G. Lee. Surface Wrinkling for Flexible and Stretchable Sensors. Small 2022, 18, e2203491.
[25]W. Dang, V. Vinciguerra, L. Lorenzelli, R. Dahiya. Printable stretchable interconnects. Flexible and Printed Electronics 2017, 2.
[26]J. Tang, H. Guo, M. Chen, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, W. Zhang. Wrinkled Ag nanostructured gratings towards single molecule detection by ultrahigh surface Raman scattering enhancement. Sensors and Actuators B: Chemical 2015, 218, 145-151.
[27]H. J. Bae, S. Bae, C. Park, S. Han, J. Kim, L. N. Kim, K. Kim, S. H. Song, W. Park, S. Kwon. Biomimetic microfingerprints for anti-counterfeiting strategies. Adv Mater 2015, 27, 2083-9.
[28]H. Ryu, S. J. Cho, B. Kim, G. Lim. A stretchable humidity sensor based on a wrinkled polyaniline nanostructure. RSC Adv. 2014, 4.
[29]D. Y. Khang, H. Q. Jiang, Y. Huang, J. A. Rogers. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208-212.
[30]Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, J. A. Rogers. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 2006, 1, 201-7.
[31]Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, G. Zhang. Super-Elastic Graphene Ripples for Flexible Strain Sensors. ACS Nano 2011, 5, 3645-3650.
[32]D. Y. Khang, J. L. Xiao, C. Kocabas, S. Maclaren, T. Banks, H. Q. Jiang, Y. Y. G. Huang, J. A. Rogers. Molecular scale buckling mechanics on individual aligned single-wall carbon nanotubes on elastomeric substrates. Nano Letters 2008, 8, 124-130.
[33]F. Xu, X. Wang, Y. T. Zhu, Y. Zhu. Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors. Advanced Functional Materials 2012, 22, 1279-1283.
[34]H. Shirakawa. The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture). Angewandte Chemie International Edition 2001, 40, 2574-2580.
[35]A. G. Macdiarmid. “Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture). Angewandte Chemie International Edition 2001, 40, 2581-2590.
[36]A. J. Heeger. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture). Angewandte Chemie International Edition 2001, 40, 2591-2611.
[37]M. X. Wan, J. P. Yang. MECHANISM OF PROTON DOPING IN POLYANILINE. Journal of Applied Polymer Science 1995, 55, 399-405.
[38]J. Xie, X. Han, C. Zong, H. Ji, C. Lu. Large-Area Patterning of Polyaniline Film Based on in Situ Self-Wrinkling and Its Reversible Doping/Dedoping Tunability. Macromolecules 2015, 48, 663-671.
[39]J. Xie, C. Zong, X. Han, H. Ji, J. Wang, X. Yang, C. Lu. Redox-Switchable Surface Wrinkling on Polyaniline Film. Macromol Rapid Commun 2016, 37, 637-42.
[40]J. Xie, X. Han, H. Ji, J. Wang, J. Zhao, C. Lu. Self-Supported Crack-Free Conducting Polymer Films with Stabilized Wrinkling Patterns and Their Applications. Sci Rep 2016, 6, 36686.
[41]J. Xie, J. Wang, J. Zhao, C. Yang, L. Li, C. Lu. Synergism of Self‐Wrinkling and Ultrasonic Cleaning to Fabricate Hierarchically Patterned Conducting Films. Advanced Materials Interfaces 2018, 5.
[42]W.-B. Liau, Y.-T. Sun, L.-Y. Yang, L.-Y. Wang, W.-Y. Chiu, K.-H. Hsieh, S.-M. Tseng. Morphology and characterization of conductive films based on polyaniline-coated polystyrene latexes. Journal of Applied Polymer Science 2006, 102, 5406-5413.
[43]Q. Wu, Z. Wang, G. Xue. Controlling the Structure and Morphology of Monodisperse Polystyrene/Polyaniline Composite Particles. Advanced Functional Materials 2007, 17, 1784-1789.
[44]E.-C. Chen, Y.-W. Lin, T.-M. Wu. Fabrication, morphology and thermal degradation behaviors of conductive polyaniline coated monodispersed polystyrene particles. Polymer Degradation and Stability 2009, 94, 550-557.
[45]Y. M. Abu, K. Aoki. Corrosion protection by polyaniline-coated latex microspheres. Journal of Electroanalytical Chemistry 2005, 583, 133-139.
[46]S. Bhattarai, J. S. Kim, Y.-S. Yun, Y.-S. Lee. Preparation of polyaniline-coated polystyrene nanoparticles for the sorption of silver ions. Reactive and Functional Polymers 2016, 105, 52-59.
[47]M. Matsuguchi, T. Nakamae, R. Fujisada, S. Shiba. A Highly Sensitive Ammonia Gas Sensor Using Micrometer-Sized Core-Shell-Type Spherical Polyaniline Particles. Sensors (Basel) 2021, 21.
[48]Y. Zheng, Q. Jin, W. Chen, Y. Sun, Z. Wang. High sensitivity and wide sensing range of stretchable sensors with conductive microsphere array structures. Journal of Materials Chemistry C 2019, 7, 8423-8431.
[49]X. Liu, X. Liang, Z. Lin, Z. Lei, Y. Xiong, Y. Hu, P. Zhu, R. Sun, C. P. Wong. Highly Sensitive and Stretchable Strain Sensor Based on a Synergistic Hybrid Conductive Network. ACS Appl Mater Interfaces 2020, 12, 42420-42429.
[50]R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827-829.
[51]Y. Li, Q. Yang, M. Li, Y. Song. Rate-dependent interface capture beyond the coffee-ring effect. Sci Rep 2016, 6, 24628.
[52]A. M. J. Edwards, R. Ledesma-Aguilar, M. I. Newton, C. V. Brown, G. Mchale. Not spreading in reverse: The dewetting of a liquid film into a single drop. Science Advances 2016, 2, 10.
[53]W. Han, Z. Lin. Learning from "coffee rings": ordered structures enabled by controlled evaporative self-assembly. Angew Chem Int Ed Engl 2012, 51, 1534-46.
[54]C.-Y. Jao, B. A. Magill, K. Chen, E. M. See, H. D. Robinson. Enhanced Multiphoton-Induced Luminescence in Silver Nanoparticles Fabricated with Nanosphere Lithography. Plasmonics 2014, 10, 87-98.
[55]H.-F. Tseng, M.-H. Cheng, J.-W. Li, J.-T. Chen. Solvent On-Film Annealing (SOFA): Morphological Evolution of Polymer Particles on Polymer Films via Solvent Vapor Annealing. Macromolecules 2017, 50, 5114-5121.
[56]H.-F. Tseng, X. Liang, C.-T. Liu, Y.-J. Chiu, J.-W. Li, H.-H. Hsu, K.-C. Chang, K. Nakajima, J.-T. Chen. Sequential Selective Solvent On-Film Annealing: Fabrication of Monolayers of Ordered Anisotropic Polymer Particles. ACS Applied Materials & Interfaces 2020, 12, 35731-35739.
[57]L. Y. Wang, Y. J. Lin, W. Y. Chiu. Synthesis and properties of monodisperse conductive core-shell latexes. Synthetic Metals 2001, 119, 155-156.
[58]M. Okubo, S. Fujii, H. Minami. Production of electrically conductive, core/shell polystyrene/polyaniline composite particles by chemical oxidative seeded dispersion polymerization. Colloid and Polymer Science 2001, 279, 139-145.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top