[1]C. Ghosh, A. Dey, I. Biswas, R. K. Gupta, V. S. Yadav, A. Yadav, N. Yadav, H. Zheng, M. Henini, and A. Mondal, “CuO–TiO2 based self-powered broad band photodetector”, Nano Materials Science, vol. 6, p. 345, 2024.
[2]N. Ding, Y. Wu, W. Xu, J. Lyu, Y. Wang, L. Zi, L. Shao, R. Sun, N. Wang, S. Liu, D. Zhou, X. Bai, J. Zhou, and H. Song, “A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared”, Light: Science & Applications, vol. 11, p. 91, 2022.
[3]A. K. Dutta and M. S. Islam, “Novel broadband photodetector for optical communication”, Active and Passive Optical Components for WDM Communications V, vol. 6014, p. 88, 2005.
[4]X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, and Y. Xie, “High‐performance flexible broadband photodetector based on organolead halide perovskite”, Adv. Funct. Mater., vol. 24, p. 7373, 2014.
[5]Y.-L. Liu, C.-C. Yu, K.-T. Lin, T.-C. Yang, E.-Y. Wang, H.-L. Chen, L.-C. Chen, and K.-H. Chen, “Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene–gold oxide heterojunction”, ACS nano, vol. 9, p. 5093, 2015.
[6]Z. Li, T. Yan, and X. Fang, “Low-dimensional wide-bandgap semiconductors for UV photodetectors”, Nature Reviews Materials, vol. 8, p. 587, 2023.
[7]J. Zha, M. Luo, M. Ye, T. Ahmed, X. Yu, D.-H. Lien, Q. He, D. Lei, J. C. Ho, J. Bullock, K. B. Crozier, and C. Tan, “Infrared Photodetectors Based on 2D Materials and Nanophotonics”, Adv. Funct. Mater., vol. 32, p. 2111970, 2022.
[8]H. Ishaq, I. Dincer, and C. Crawford, “A review on hydrogen production and utilization: Challenges and opportunities”, International Journal of Hydrogen Energy, vol. 47, p. 26238, 2022.
[9]J. Hwang, K. Maharjan, and H. Cho, “A review of hydrogen utilization in power generation and transportation sectors: Achievements and future challenges”, International journal of hydrogen energy, vol. 48, p. 28629, 2023.
[10]T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International journal of hydrogen energy, vol. 27, p. 991, 2002.
[11]H. Fang, C. Zheng, L. Wu, Y. Li, J. Cai, M. Hu, X. Fang, R. Ma, Q. Wang, and H. Wang, “Solution-Processed Self-Powered Transparent Ultraviolet Photodetectors with Ultrafast Response Speed for High-Performance Communication System”, Adv. Funct. Mater., vol. 29, p. 1809013, 2019.
[12]D. Yang, F. Du, Y. Ren, T. Kang, P. Hu, F. Teng, and H. Fan, “A high-performance NiO/TiO2 UV photodetector: the influence of the NiO layer position”, Journal of Materials Chemistry C, vol. 9, p. 14146, 2021.
[13]V. Verma, M. Al-Dossari, J. Singh, M. Rawat, M. G. Kordy, and M. Shaban, “A review on green synthesis of TiO2 NPs: photocatalysis and antimicrobial applications”, Polymers, vol. 14, p. 1444, 2022.
[14]H. M. Moustafa, V. K. Velisoju, H. O. Mohamed, M. Obaid, P. D. Kolubah, X. Yao, N. Ghaffour, and P. Castaño, “Co–TiO2 supported on reduced graphene oxide as a highly active and stable photocatalyst for hydrogen generation”, Fuel, vol. 338, p. 127232, 2023.
[15]W. Tian, H. Lu, and L. Li, “Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures”, Nano Research, vol. 8, p. 382, 2015.
[16]R. S. Devan, R. A. Patil, J. H. Lin, and Y. R. Ma, “One‐dimensional metal‐oxide nanostructures: recent developments in synthesis, characterization, and applications”, Adv. Funct. Mater., vol. 22, p. 3326, 2012.
[17]S. Dey and S. C. Roy, “Designing TiO2 nanostructures through hydrothermal growth: influence of process parameters and substrate position”, Nano Express, vol. 2, p. 010028, 2021.
[18]D. Wang, X. Zhang, P. Sun, S. Lu, L. Wang, C. Wang, and Y. Liu, “Photoelectrochemical water splitting with rutile TiO2 nanowires array: synergistic effect of hydrogen treatment and surface modification with anatase nanoparticles”, Electrochimica Acta, vol. 130, p. 290, 2014.
[19]H. Li, Q. Yu, Y. Huang, C. Yu, R. Li, J. Wang, F. Guo, S. Jiao, S. Gao, and Y. Zhang, “Ultralong rutile TiO2 nanowire arrays for highly efficient dye-sensitized solar cells”, ACS Appl. Mater. Interfaces, vol. 8, p. 13384, 2016.
[20]X. Sheng, D. He, J. Yang, K. Zhu, and X. Feng, “Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties”, Nano letters, vol. 14, p. 1848, 2014.
[21]B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells”, Journal of the American Chemical Society, vol. 131, p. 3985, 2009.
[22]H. Kim and B. L. Yang, “Effect of seed layers on TiO2 nanorod growth on FTO for solar hydrogen generation”, International Journal of Hydrogen Energy, vol. 40, p. 5807, 2015.
[23]J. Wang, T. Zhang, D. Wang, R. Pan, Q. Wang, and H. Xia, “Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer”, Journal of Alloys and Compounds, vol. 551, p. 82, 2013.
[24]P. Bonderson, C. Nayak, and X.-L. Qi, “A time-reversal invariant topological phase at the surface of a 3D topological insulator”, Journal of Statistical Mechanics: Theory and Experiment, vol. 2013, p. P09016, 2013.
[25]C. Yue, S. Jiang, H. Zhu, L. Chen, Q. Sun, and D. W. Zhang, “Device applications of synthetic topological insulator nanostructures”, Electronics, vol. 7, p. 225, 2018.
[26]L. Huang, Q. Wang, H. Liu, Y. Wu, Y. Yang, G. Ma, Z. Lei, and S. Ren, “N+ irradiation regulates surface defects and doping towards efficient hydrogen evolution reaction on Sb2Te3”, Applied Surface Science, vol. 609, p. 155347, 2023.
[27]J. Chen and X. Ying, “High-performance, ultra-broadband Sb2Te3 photodetector assisted by multimechanism”, AIP Advances, vol. 14, p. 035025, 2024.
[28]H. Liu, D. Li, C. Ma, X. Zhang, X. Sun, C. Zhu, B. Zheng, Z. Zou, Z. Luo, and X. Zhu, “Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p–n heterojunctions for high performance optoelectronics”, Nano Energy, vol. 59, p. 66, 2019.
[29]A. Pandey, R. Yadav, M. Kaur, P. Singh, A. Gupta, and S. Husale, “High performing flexible optoelectronic devices using thin films of topological insulator”, Scientific reports, vol. 11, p. 832, 2021.
[30]J. Liu, H. Wang, X. Li, H. Chen, Z. Zhang, W. Pan, G. Luo, C. Yuan, Y. Ren, and W. Lei, “Ultrasensitive flexible near-infrared photodetectors based on Van der Waals Bi2Te3 nanoplates”, Applied Surface Science, vol. 484, p. 542, 2019.
[31]D. W. Newbrook, S. P. Richards, V. K. Greenacre, A. L. Hector, W. Levason, G. Reid, C. K. de Groot, and R. Huang, “Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generators”, ACS Applied Energy Materials, vol. 3, p. 5840, 2020.
[32]R. Huang, S. L. Benjamin, C. Gurnani, Y. Wang, A. L. Hector, W. Levason, G. Reid, and C. De Groot, “Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition”, Scientific Reports, vol. 6, p. 27593, 2016.
[33]D. B. Patel, K. R. Chauhan, S.-H. Park, and J. Kim, “High-performing transparent photodetectors based on Schottky contacts”, Materials Science in Semiconductor Processing, vol. 64, p. 137, 2017.
[34]J. T. Mazumder, R. Mayengbam, A. Nath, and M. B. Sarkar, “Investigation of structural, optical and electrical properties of TiO2 thin film-nanowire-based device for photodetector application”, Optical Materials, vol. 133, p. 112936, 2022.
[35]M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio”, ACS Nano, vol. 10, p. 1572, 2016.
[36]M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.-Q. Zhang, S. Al-Deyab, and Y. Lai, “A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications”, Journal of Materials Chemistry A, vol. 4, p. 6772, 2016.
[37]A. Kumar, A. R. Madaria, and C. Zhou, “Growth of Aligned Single-Crystalline Rutile TiO2 Nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells”, The Journal of Physical Chemistry C, vol. 114, p. 7787, 2010.
[38]Y. Tang, L. Hong, Q. Wu, J. Li, G. Hou, H. Cao, L. Wu, and G. Zheng, “TiO2(B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries”, Electrochimica Acta, vol. 195, p. 27, 2016.
[39]H. Kmentova, S. Kment, L. Wang, S. Pausova, T. Vaclavu, R. Kuzel, H. Han, Z. Hubicka, M. Zlamal, J. Olejnicek, M. Cada, J. Krysa, and R. Zboril, “Photoelectrochemical and structural properties of TiO2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication”, Catalysis Today, vol. 287, p. 130, 2017.
[40]J. Kapusta-Kołodziej, K. Syrek, A. Pawlik, M. Jarosz, O. Tynkevych, and G. D. Sulka, “Effects of anodizing potential and temperature on the growth of anodic TiO2 and its photoelectrochemical properties”, Applied Surface Science, vol. 396, p. 1119, 2017.
[41]J. Shi and X. Wang, “Growth of Rutile Titanium Dioxide Nanowires by Pulsed Chemical Vapor Deposition”, Crystal Growth & Design, vol. 11, p. 949, 2011.
[42]J. Du, X. Gu, H. Guo, J. Liu, Q. Wu, and J. Zou, “Self-induced preparation of TiO2 nanowires by chemical vapor deposition”, Journal of Crystal Growth, vol. 427, p. 54, 2015.
[43]C. Chen, Y. Chen, A. Korotcov, Y. Huang, D. Tsai, and K.-K. Tiong, “Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal–organic chemical vapor deposition”, Nanotechnology, vol. 19, p. 075611, 2008.
[44]T. Cossuet, L. Rapenne, G. Renou, E. Appert, and V. Consonni, “Template-Assisted Growth of Open-Ended TiO2 Nanotubes with Hexagonal Shape Using Atomic Layer Deposition”, Crystal Growth & Design, vol. 21, p. 125, 2021.
[45]J. Sun, W. Zhen, and C. Xue, “Magnetic template-assisted construction of 2D PCN/TiO2 heterostructures for efficient photocatalytic hydrogen generation”, Applied Surface Science, vol. 623, p. 157131, 2023.
[46]F. Xu, H. Tan, J. Fan, B. Cheng, J. Yu, and J. Xu, “Electrospun TiO2-Based Photocatalysts”, Solar RRL, vol. 5, p. 2000571, 2021.
[47]J. Song, R. Guan, M. Xie, P. Dong, X. Yang, and J. Zhang, “Advances in electrospun TiO2 nanofibers: Design, construction, and applications”, Chemical Engineering Journal, vol. 431, p. 134343, 2022.
[48]M. Vahtrus, A. Šutka, S. Vlassov, A. Šutka, B. Polyakov, R. Saar, L. Dorogin, and R. Lõhmus, “Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques”, Materials Characterization, vol. 100, p. 98, 2015.
[49]J. G. Mahy, L. Lejeune, T. Haynes, S. D. Lambert, R. H. M. Marcilli, C.-A. Fustin, and S. Hermans, “Eco-friendly colloidal aqueous sol-gel process for TiO2 synthesis: the peptization method to obtain crystalline and photoactive materials at low temperature”, Catalysts, vol. 11, p. 768, 2021.
[50]Z. Li, Z. Li, C. Zuo, and X. Fang, “Application of nanostructured TiO2 in UV photodetectors: A review”, Adv. Mater., vol. 34, p. 2109083, 2022.
[51]Z. Dong, M. Chen, D. Qin, and S. Han, “Recent advances and perspective of modified TiO2-based photoanodes toward photoelectrochemical water splitting”, Fuel, vol. 373, p. 132366, 2024.
[52]S. Peiris, H. B. de Silva, K. N. Ranasinghe, S. V. Bandara, and I. R. Perera, “Recent development and future prospects of TiO2 photocatalysis”, Journal of the Chinese Chemical Society, vol. 68, p. 738, 2021.
[53]M. Dell’Edera, C. L. Porto, I. De Pasquale, F. Petronella, M. L. Curri, A. Agostiano, and R. Comparelli, “Photocatalytic TiO2-based coatings for environmental applications”, Catalysis Today, vol. 380, p. 62, 2021.
[54]S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, and L. Tayebi, “Biomedical applications of TiO2 nanostructures: recent advances”, International journal of nanomedicine, p. 3447, 2020.
[55]J. M. Rzaij and A. M. Abass, “Review on: TiO2 thin film as a metal oxide gas sensor”, J. Chem. Rev, vol. 2, p. 114, 2020.
[56]S. Palmas, L. Mais, M. Mascia, and A. Vacca, “Trend in using TiO2 nanotubes as photoelectrodes in PEC processes for wastewater treatment”, Current Opinion in Electrochemistry, vol. 28, p. 100699, 2021.
[57]M. Nicolaescu, C. Bandas, C. Orha, V. Şerban, C. Lazău, and S. Căprărescu, “Fabrication of a UV photodetector based on n-TiO2/p-CuMnO2 heterostructures”, Coatings, vol. 11, p. 1380, 2021.
[58]K. M. Chahrour, F. Yam, and R. Abdalrheem, “High-performance UV photodetector of anodic rutile TiO2 nanotube arrays”, Materials Letters, vol. 248, p. 161, 2019.
[59]Y. Zhang, R. Zhou, R. Xu, L. Fang, J. Zhou, Y. Chen, and S. Ruan, “Visible-blind self-powered ultraviolet photodetector based on CuI/TiO2 nanostructured heterojunctions”, ACS Applied Nano Materials, vol. 5, p. 16804, 2022.
[60]Y. Gao, J. Xu, S. Shi, H. Dong, Y. Cheng, C. Wei, X. Zhang, S. Yin, and L. Li, “TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse”, ACS Appl. Mater. Interfaces, vol. 10, p. 11269, 2018.
[61]F. Kara, M. Kurban, and B. Coşkun, “Evaluation of electronic transport and optical response of two-dimensional Fe-doped TiO2 thin films for photodetector applications”, Optik, vol. 210, p. 164605, 2020.
[62]P. K. Yadav, B. Ajitha, C. M. A. Ahmed, Y. A. K. Reddy, and V. R. M. Reddy, “Superior UV photodetector performance of TiO2 films using Nb doping”, Journal of Physics and Chemistry of Solids, vol. 160, p. 110350, 2022.
[63]P. Pooja and P. Chinnamuthu, “Annealed n-TiO2/In2O3 nanowire metal-insulator-semiconductor for highly photosensitive low-noise ultraviolet photodetector”, Journal of Alloys and Compounds, vol. 854, p. 157229, 2021.
[64]S. Ni, Q. Yu, Y. Huang, J. Wang, L. Li, C. Yu, F. Guo, H. Wu, W. Lu, and X. Zhang, “Heterostructured TiO2/MgO nanowire arrays for self-powered UV photodetectors”, RSC advances, vol. 6, p. 85951, 2016.
[65]W. Zheng, Y. Dong, T. Li, J. Chen, X. Chen, Y. Dai, and G. He, “MgO blocking layer induced highly UV responsive TiO2 nanoparticles based self-powered photodetectors”, Journal of Alloys and Compounds, vol. 869, p. 159299, 2021.
[66]R. Cao, J. Xu, S. Shi, J. Chen, D. Liu, Y. Bu, X. Zhang, S. Yin, and L. Li, “High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO2 nanorods”, Journal of Materials Chemistry C, vol. 8, p. 9646, 2020.
[67]Y. Xie, L. Wei, Q. Li, Y. Chen, S. Yan, J. Jiao, G. Liu, and L. Mei, “High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays”, Nanotechnology, vol. 25, p. 075202, 2014.
[68]Z. Pan, Y. Qiu, J. Yang, M. Liu, L. Zhou, Y. Xu, L. Sheng, X. Zhao, and Y. Zhang, “Synthesis of three-dimensional hyperbranched TiO2 nanowire arrays with significantly enhanced photoelectrochemical hydrogen production”, Journal of Materials Chemistry A, vol. 3, p. 4004, 2015.
[69]P.-Y. Hsieh, Y.-H. Chiu, T.-H. Lai, M.-J. Fang, Y.-T. Wang, and Y.-J. Hsu, “TiO2 nanowire-supported sulfide hybrid photocatalysts for durable solar hydrogen production”, ACS Appl. Mater. Interfaces, vol. 11, p. 3006, 2018.
[70]P. Subramanyam, B. Meena, D. Suryakala, and C. Subrahmanyam, “TiO2 photoanodes sensitized with Bi2Se3 nanoflowers for visible–near-infrared photoelectrochemical water splitting”, ACS Applied Nano Materials, vol. 4, p. 739, 2021.
[71]B. Meena, M. Kumar, S. Gupta, L. Sinha, P. Subramanyam, and C. Subrahmanyam, “Rational design of TiO2/BiSbS3 heterojunction for efficient solar water splitting”, Sustainable Energy Technologies and Assessments, vol. 49, p. 101775, 2022.
[72]A. Parbatani, E. S. Song, J. Claypoole, and B. Yu, “High performance broadband bismuth telluride tetradymite topological insulator photodiode”, Nanotechnology, vol. 30, p. 165201, 2019.
[73]H. Lu, D. Li, Y. Li, Z. Yue, and J. Zhao, “Topological insulator plasmonics and enhanced light-matter interactions”, Plasmon-enhanced light-matter interactions, p. 89, 2022.
[74]S. Islam, J. K. Mishra, A. Kumar, D. Chatterjee, N. Ravishankar, and A. Ghosh, “Ultra-sensitive graphene–bismuth telluride nano-wire hybrids for infrared detection”, Nanoscale, vol. 11, p. 1579, 2019.
[75]A. Parbatani, E. S. Song, F. Yang, and B. Yu, “A broadband, self-biased photodiode based on antimony telluride (Sb2Te3) nanocrystals/silicon heterostructures”, Nanoscale, vol. 10, p. 15003, 2018.
[76]W. H. Chang, S. Hatayama, Y. Saito, N. Okada, T. Endo, Y. Miyata, and T. Irisawa, “Sb2Te3/MoS2 van der Waals junctions with high thermal stability and low contact resistance”, Advanced Electronic Materials, vol. 9, p. 2201091, 2023.
[77]J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber”, Optical materials express, vol. 4, p. 1, 2014.
[78]Z. Zeng, T. A. Morgan, D. Fan, C. Li, Y. Hirono, X. Hu, Y. Zhao, J. S. Lee, J. Wang, Z. M. Wang, S. Yu, M. E. Hawkridge, M. Benamara, and G. J. Salamo, “Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs (111) substrates: a potential route to fabricate topological insulator p-n junction”, AIP Advances, vol. 3, p. 072112, 2013.
[79]G. Wang, C. Li, D. Shi, Q. Nie, H. Wang, X. Shen, and Y. Lu, “Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films”, Scientific Reports, vol. 7, p. 1, 2017.
[80]M. Li, Z. Wang, D. Han, X. Shi, T. Li, X. P. Gao, and Z. Zhang, “High photodetection performance on vertically oriented topological insulator Sb2Te3/Silicon heterostructure”, Journal of Solid State Chemistry, vol. 315, p. 123506, 2022.
[81]Y. Zhang, L. Tang, and K. S. Teng, “High performance broadband photodetectors based on Sb2Te3/n-Si heterostructure”, Nanotechnology, vol. 31, p. 304002, 2020.
[82]Z. Yu, W. Han, Z. Yue, B. Cai, Z. Wan, H. Lu, K. See, Z. Cheng, M. Gu, and S. Hu, “Photo-electrochemical effects in topological insulator Sb2Te3 thin films”, Optical Materials, vol. 143, p. 114240, 2023.
[83]Q. Wang, L. Huang, Y. Wu, G. Ma, Z. Lei, and S. Ren, “Role of V doping in core–shell heterostructured Bi2Te3/Sb2Te3 for hydrogen evolution reaction”, International Journal of Hydrogen Energy, vol. 47, p. 21361, 2022.
[84]J. Chen, L. Li, P. Gong, H. Zhang, S. Yin, M. Li, L. Wu, W. Gao, M. Long, L. Shan, F. Yan, and G. Li, “A Submicrosecond-Response Ultraviolet–Visible–Near-Infrared Broadband Photodetector Based on 2D Tellurosilicate InSiTe3”, ACS Nano, vol. 16, p. 7745, 2022.
[85]J. Yao and G. Yang, “2D material broadband photodetectors”, Nanoscale, vol. 12, p. 454, 2020.
[86]Y. Mingmuang, N. Chanlek, M. Takesada, E. Swatsitang, and P. Thongbai, “Pioneering dielectric materials of Sn-doped Nb 0.025 Ti 0.975 O 2 ceramics with excellent temperature and humidity stability for advanced ceramic capacitors”, RSC advances, vol. 14, p. 7631, 2024.
[87]D. Wang, W. Zhao, H. Li, and M. Furuta, “Drain current stress-induced instability in amorphous InGaZnO thin-film transistors with different active layer thicknesses”, Materials, vol. 11, p. 559, 2018.
[88]D. Shin, S. Roy, T. R. Watkins, and A. Shyam, “Lattice mismatch modeling of aluminum alloys”, Computational Materials Science, vol. 138, p. 149, 2017.
[89]Y.-C. Huang, F.-S. Tsai, and S.-J. Wang, “Preparation of TiO2 nanowire arrays through hydrothermal growth method and their pH sensing characteristics”, Japanese Journal of Applied Physics, vol. 53, p. 06JG02, 2014.
[90]D. D. Traficante, “Impedance: What it is, and why it must be matched”, Concepts in Magnetic Resonance, vol. 1, p. 73, 1989.
[91]H. S. Magar, R. Y. Hassan, and A. Mulchandani, “Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications”, Sensors, vol. 21, p. 6578, 2021.
[92]W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, “Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries”, Journal of Electrochemical Science and Technology, vol. 11, p. 1, 2020.
[93]A. C. Lazanas and M. I. Prodromidis, “Electrochemical impedance spectroscopy─ a tutorial”, ACS Measurement Science Au, vol. 3, p. 162, 2023.
[94]T. u. Haq and Y. Haik, “Electrochemical Methods for Measuring Water Splitting Efficiency”, Electrochemical Water Splitting: Fundamentals, Challenges and Advances, p. 71, 2024.
[95]M. Janczarek and E. Kowalska, “Defective dopant-free TiO2 as an efficient visible light-active photocatalyst”, Catalysts, vol. 11, p. 978, 2021.
[96]S. M. Ali and M. M. Khan, “Annealing effects on structural, optical and electrical properties of TiO2/FTO heterojunction”, Applied Physics A, vol. 126, p. 468, 2020.
[97]S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of TiO2”, Surfaces, vol. 1, p. 73, 2018.
[98]S. McDonnell, C. Smyth, C. L. Hinkle, and R. M. Wallace, “MoS2–titanium contact interface reactions”, ACS Appl. Mater. Interfaces, vol. 8, p. 8289, 2016.
[99]M. G. Helander, M. Greiner, Z. Wang, W. M. Tang, and Z. Lu, “Work function of fluorine doped tin oxide”, Journal of Vacuum Science & Technology A, vol. 29, 2011.
[100]Z. Hu and Z. Wu, “Sb2Te3-Based Multilayer Films”, Nanostructured Thermoelectric Films, p. 87, 2020.
[101]G. Hao, X. Qi, G. Wang, X. Peng, S. Chang, X. Wei, and J. Zhong, “Synthesis and characterization of few-layer Sb2Te3 nanoplates with electrostatic properties”, RSC advances, vol. 2, p. 10694, 2012.
[102]B. Li, S. Wu, and X. Gao, “Theoretical calculation of a TiO2-based photocatalyst in the field of water splitting: A review”, Nanotechnology Reviews, vol. 9, p. 1080, 2020.
[103]M. Rafique, S. Hajra, M. Irshad, M. Usman, M. Imran, M. A. Assiri, and W. M. Ashraf, “Hydrogen production using TiO2-based photocatalysts: a comprehensive review”, ACS omega, vol. 8, p. 25640, 2023.
[104]M. Gao, W. Xiao, L. Miao, Z. Yang, W. Liang, T. Ao, Q. Yang, and W. Chen, “Prussian blue and its analogs: A robust platform for efficient capacitive deionization”, Desalination, p. 117278, 2024.
[105]X. Wang, B. He, Z. Hu, Z. Zeng, and S. Han, “Current advances in precious metal core–shell catalyst design”, Science and technology of advanced materials, vol. 15, p. 043502, 2014.
[106]H. Kotake, J. Jia, S.-i. Nakamura, T. Okajima, and Y. Shigesato, “Tailoring the crystal structure of TiO2 thin films from the anatase to rutile phase”, Journal of Vacuum Science & Technology A, vol. 33, p. 041505, 2015.
[107]G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting”, Nano letters, vol. 11, p. 3026, 2011.
[108]D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, and J. Jiao, “Visible-blind quasi-solid-state UV detector based on SnO2-TiO2 nanoheterostructure arrays”, Journal of Alloys and Compounds, vol. 751, p. 56, 2018.
[109]S. Kumbhar, S. Shaikh, and K. Rajpure, “Hydrothermally-grown TiO2 thin film-based metal–semiconductor–metal UV photodetector”, Journal of Electronic Materials, vol. 49, p. 499, 2020.
[110]G. Wang, F. Ji, J. Li, X. Zhang, H. Wu, Z. Bai, M. Jin, J. Zhou, E. Xie, and X. Pan, “Preparation of a flexible photoanode of the photoelectrochemical ultraviolet photodetector based on rutile TiO2 nanowires and the suppressed charge recombination at solid/liquid interface”, Journal of Physics D: Applied Physics, vol. 57, p. 025101, 2023.
[111]S. Ni, F. Guo, D. Wang, G. Liu, Z. Xu, L. Kong, J. Wang, S. Jiao, Y. Zhang, and Q. Yu, “Effect of MgO surface modification on the TiO2 nanowires electrode for self-powered UV photodetectors”, ACS Sustainable Chemistry & Engineering, vol. 6, p. 7265, 2018.
[112]Z. Wang, J. Xu, S. Shi, J. Chen, J. Xu, L. Kong, X. Zhang, L. Li, and S. Yin, “Self-powered UV photodetector of TiO2 with BaTiO3 surface modification and light-controlled logic circuits application”, ACS Appl. Mater. Interfaces, vol. 15, p. 31943, 2023.
[113]Z. Song, H. Zhou, P. Tao, B. Wang, J. Mei, H. Wang, S. Wen, Z. Song, and G. Fang, “The synthesis of TiO2 nanoflowers and their application in electron field emission and self-powered ultraviolet photodetector”, Materials Letters, vol. 180, p. 179, 2016.
[114]D. Rodríguez and P. Perillo, “Ultra-fast TiO2 nanopores broadband photodetector”, Optical Materials, vol. 135, p. 113315, 2023.
[115]邱治嵩, "還原氧化石墨烯/二氧化鈦奈米棒陣列異質結構之寬頻光感測元件," 碩士, 材料科學與工程學系所, 國立中興大學, 台中市, 2024.[116]K. K. Manga, J. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High‐performance broadband photodetector using solution‐processible PbSe–TiO2–graphene hybrids”, Adv. Mater., vol. 24, p. 1697, 2012.
[117]M. Landmann, E. Rauls, and W. Schmidt, “The electronic structure and optical response of rutile, anatase and brookite TiO2”, Journal of physics: condensed matter, vol. 24, p. 195503, 2012.