跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪秉聖
研究生(外文):Ping-Sheng Hung
論文名稱:成長碲化銻/二氧化鈦異質結構奈米線陣列及其光感測與光電水解性質之研究
論文名稱(外文):Fabrication of Antimony Telluride/ Titanium Dioxide Heterostructure Nanowire Arrays and Their Photosensing and Photoelectrochemical Water Splitting Properties
指導教授:許薰丰
指導教授(外文):Hsun-Feng Hsu
口試委員:吳文偉李勝偉
口試委員(外文):Wen-Wei WuSheng-Wei Li
口試日期:2024-07-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:119
中文關鍵詞:二氧化鈦奈米線陣列碲化銻奈米片碲化銻核殼光感測元件光電化學水分解
外文關鍵詞:TiO2 nanowire arraysSb2Te3 nanosheetSb2Te3 core-shellphotodetectorphotoelectrochemical water splitting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
二氧化鈦奈米線陣列具有高紫外線吸收率、高效光催化性能、化學穩定性優異等特性。碲化銻則具備窄能隙、結構穩定、載子濃度高、拓樸表面態提供快速、低耗散且高遷移率的電子傳輸通道等特性。結合兩者可拓展其光吸收範圍並形成異質結構接面,促進光生載子的分離,提升光電性能,適合建構寬頻光感測器與光電化學水分解之光電極。

本研究以水熱法於FTO玻璃上成長二氧化鈦奈米線陣列,透過化學氣相沉積法於其上沉積碲化銻,於較高之沉積溫度(380 °C)成長碲化銻奈米片/ 二氧化鈦奈米線異質結構陣列,較低之沉積溫度(100 °C)成長碲化銻/ 二氧化鈦核殼異質結構奈米線陣列,以XPS確認二氧化鈦奈米線陣列退火後氧空位減少、羥基增加,UV-Vis了解元件對各波段光源之吸收率,由SEM確認形貌,XRD、TEM分析相與成分。前者做為光電化學水分解之光電極,後者則做為光感測器。

實驗結果顯示於碲化銻/ 二氧化鈦核殼異質結構奈米線陣列形成p-n異質接面,具備由365 nm至1300 nm的全波段自供電快速響應,碲化銻在全波段皆有光生電子電洞產生,而二氧化鈦的光生電子電洞對在365 nm波段來源於能隙;660 nm與940 nm波段則由缺陷態躍遷;1300 nm波段則全由碲化銻之窄能隙產生。光電化學水分解方面,碲化銻奈米片/ 二氧化鈦奈米線異質結構陣列與二氧化鈦奈米線陣列相較,光電流密度從4.03 mA/ cm2提升至5.81 mA/ cm2。碲化銻與二氧化鈦之結合無論於光感測亦或光電化學水分解方面皆有良好的成果。
Titanium dioxide (TiO2) nanowire arrays exhibit high ultraviolet (UV) absorption efficiency, superior photocatalytic properties, and excellent chemical stability. Antimony telluride (Sb2Te3), in contrast, features a narrow bandgap, structural stability, high carrier concentration, and topologically protected surface states that facilitate rapid, low-dissipation, and high-mobility electron transport. The integration of these two materials can broaden the optical absorption spectrum and form a heterojunction, which promotes the separation of photogenerated charge carriers, thereby enhancing optoelectronic performance. This combination is particularly well-suited for the development of broadband photodetectors and photoelectrodes for photoelectrochemical water splitting.

In this study, Titanium dioxide nanowire arrays were grown on FTO glass using the hydrothermal method, followed by the deposition of antimony telluride through chemical vapor deposition (CVD). At a higher deposition temperature (380 °C), antimony telluride nanoflakes/titanium dioxide nanowire heterostructure arrays were formed, while at a lower deposition temperature (100 °C), antimony telluride/titanium dioxide core-shell heterostructure nanowire arrays were produced. X-ray photoelectron spectroscopy (XPS) was used to confirm the reduction of oxygen vacancies and the increase in hydroxyl groups after annealing the titanium dioxide nanowire arrays. UV-Vis spectroscopy was utilized to assess the devices absorption rates across various light wavelengths, scanning electron microscopy (SEM) to examine morphology, and X-ray diffraction (XRD) and transmission electron microscopy (TEM) for phase and compositional analysis. The former structure served as a photoelectrode for photoelectrochemical water splitting, while the latter was used as a photodetector.

Experimental results reveal that the Sb2Te3/ TiO2 core-shell heterostructure nanowire arrays forms a p-n heterojunction, which provides a self-powered, rapid response across the full spectrum from 365 nm to 1300 nm. Sb2Te3 generates photogenerated electron-hole pairs across the entire spectrum, while TiO2 contributes photogenerated carriers from its bandgap at 365 nm and from defect states at 660 nm and 940 nm. In the context of photoelectrochemical water splitting, the photocurrent density of the Sb2Te3 nanosheet/ TiO2 nanowire heterostructure arrays improved from 4.03 mA/ cm2 to 5.81 mA/ cm2 compared to the TiO2 nanowire arrays. The combination of Sb2Te3 and TiO2 demonstrates significant potential for both photodetection and photoelectrochemical water splitting applications.
摘要 i
Abstract iii
目錄 v
表目次 ix
圖目次 x
第一章 前言 1
第二章 文獻回顧 3
2-1 二氧化鈦介紹 3
2-2 一維二氧化鈦奈米結構之製備方法 3
2-2-1 水熱法 4
2-2-2 電化學陽極氧化法 4
2-2-3 化學氣相沉積法 5
2-2-4 模板輔助法與溶膠-凝膠法 5
2-2-5 靜電紡絲法 6
2-2-6 鈦前驅物的化學反應式 6
2-3 二氧化鈦之應用 6
2-3-1 二氧化鈦之光感測器 7
2-3-2 二氧化鈦之光電化學水分解 9
2-4 拓樸絕緣體介紹 10
2-5 碲化銻之簡介 10
2-6 碲化銻之製備方法 11
2-6-1 化學氣相沉積(Chemical vapor deposition, CVD) 11
2-6-2 分子束磊晶(Molecular Beam Epitaxy, MBE) 11
2-6-3 磁控濺鍍(Magnetron Sputtering) 11
2-6-4 機械剝離法(Mechanical Exfoliation) 12
2-7 碲化銻之應用 12
2-7-1 碲化銻之光感測器 12
2-7-2 碲化銻之光電化學水分解 12
2-8 寬頻光感測元件之應用 13
2-9 研究動機 14
第三章 實驗方法 16
3-1 二氧化鈦奈米線陣列之製備 16
3-1-1 FTO基板清潔 16
3-1-2 水熱法製備二氧化鈦奈米線陣列 16
3-1-3 大氣退火二氧化鈦奈米線陣列 17
3-2 碲化銻之製備 17
3-2-1 化學氣相沉積碲化銻 17
3-3 光電化學水分解性質量測 18
3-4 光電性質量測 18
3-5 實驗儀器 19
3-5-1 精密烘箱 (登盈 DOS-30) 19
3-5-2 單區管狀高溫爐 (Thermo Fisher TF55030A) 19
3-5-3 超音波振盪機 (Deltalab DC150) 19
3-6 分析儀器 20
3-6-1 冷場發射式掃描電子顯微鏡SEM (JEOL JSM-6700F) 20
3-6-2 場發射式穿透電子顯微鏡TEM (JEOL JEM-2100F) 20
3-6-3 X光繞射儀XRD (Bruker D8 Advance) 21
3-6-4 紫外可見紅外光光譜儀UV-Vis (Hitachi UH5700) 21
3-6-5 化學分析電子能譜儀XPS (ULVAC-PHI 5000) 21
3-6-6 元件光感測電性量測系統 (Keithley Instruments 2612A) 22
3-6-7 LED燈泡 (Thorlabs) 22
3-6-8 手持式雷射功率計 (Newport 843-R) 22
3-6-9 恆電位儀 (Metrohm Autolab PGSTAT101) 23
3-6-10 三電極系統 23
第四章 結果與討論 24
4-1 二氧化鈦奈米線製備 24
4-1-1 乙醇添加量對二氧化鈦奈米線生長之影響 24
4-1-2 水熱製程時間對二氧化鈦奈米線生長之影響 25
4-1-3 退火對二氧化鈦奈米線之影響 25
4-2 製備碲化銻奈米片/ 二氧化鈦異質結構奈米線陣列 27
4-2-1 氣體流量對碲化銻生長之影響 27
4-2-2 蒸發源溫度對碲化銻生長之影響 28
4-3 光電化學水分解性質量測 28
4-3-1 元件之光電化學水分解分析 29
4-4 元件之光電化學水分解機制 31
4-5 製備碲化銻/ 二氧化鈦核殼異質結構奈米線陣列 33
4-5-1 蒸發源溫度對碲化銻生長之影響 33
4-5-2 沉積時間對碲化銻生長之影響 34
4-6 光感測性質量測 35
4-6-1 元件之光感測性質分析 35
4-7 元件之光感測機制 36
4-7-1 TiO2 NWs元件之光感測機制 37
4-7-2 Sb2Te3/ TiO2 NWs元件之光感測機制 37
第五章 結論 39
第六章 參考文獻 110
[1]C. Ghosh, A. Dey, I. Biswas, R. K. Gupta, V. S. Yadav, A. Yadav, N. Yadav, H. Zheng, M. Henini, and A. Mondal, “CuO–TiO2 based self-powered broad band photodetector”, Nano Materials Science, vol. 6, p. 345, 2024.
[2]N. Ding, Y. Wu, W. Xu, J. Lyu, Y. Wang, L. Zi, L. Shao, R. Sun, N. Wang, S. Liu, D. Zhou, X. Bai, J. Zhou, and H. Song, “A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared”, Light: Science & Applications, vol. 11, p. 91, 2022.
[3]A. K. Dutta and M. S. Islam, “Novel broadband photodetector for optical communication”, Active and Passive Optical Components for WDM Communications V, vol. 6014, p. 88, 2005.
[4]X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, and Y. Xie, “High‐performance flexible broadband photodetector based on organolead halide perovskite”, Adv. Funct. Mater., vol. 24, p. 7373, 2014.
[5]Y.-L. Liu, C.-C. Yu, K.-T. Lin, T.-C. Yang, E.-Y. Wang, H.-L. Chen, L.-C. Chen, and K.-H. Chen, “Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene–gold oxide heterojunction”, ACS nano, vol. 9, p. 5093, 2015.
[6]Z. Li, T. Yan, and X. Fang, “Low-dimensional wide-bandgap semiconductors for UV photodetectors”, Nature Reviews Materials, vol. 8, p. 587, 2023.
[7]J. Zha, M. Luo, M. Ye, T. Ahmed, X. Yu, D.-H. Lien, Q. He, D. Lei, J. C. Ho, J. Bullock, K. B. Crozier, and C. Tan, “Infrared Photodetectors Based on 2D Materials and Nanophotonics”, Adv. Funct. Mater., vol. 32, p. 2111970, 2022.
[8]H. Ishaq, I. Dincer, and C. Crawford, “A review on hydrogen production and utilization: Challenges and opportunities”, International Journal of Hydrogen Energy, vol. 47, p. 26238, 2022.
[9]J. Hwang, K. Maharjan, and H. Cho, “A review of hydrogen utilization in power generation and transportation sectors: Achievements and future challenges”, International journal of hydrogen energy, vol. 48, p. 28629, 2023.
[10]T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International journal of hydrogen energy, vol. 27, p. 991, 2002.
[11]H. Fang, C. Zheng, L. Wu, Y. Li, J. Cai, M. Hu, X. Fang, R. Ma, Q. Wang, and H. Wang, “Solution-Processed Self-Powered Transparent Ultraviolet Photodetectors with Ultrafast Response Speed for High-Performance Communication System”, Adv. Funct. Mater., vol. 29, p. 1809013, 2019.
[12]D. Yang, F. Du, Y. Ren, T. Kang, P. Hu, F. Teng, and H. Fan, “A high-performance NiO/TiO2 UV photodetector: the influence of the NiO layer position”, Journal of Materials Chemistry C, vol. 9, p. 14146, 2021.
[13]V. Verma, M. Al-Dossari, J. Singh, M. Rawat, M. G. Kordy, and M. Shaban, “A review on green synthesis of TiO2 NPs: photocatalysis and antimicrobial applications”, Polymers, vol. 14, p. 1444, 2022.
[14]H. M. Moustafa, V. K. Velisoju, H. O. Mohamed, M. Obaid, P. D. Kolubah, X. Yao, N. Ghaffour, and P. Castaño, “Co–TiO2 supported on reduced graphene oxide as a highly active and stable photocatalyst for hydrogen generation”, Fuel, vol. 338, p. 127232, 2023.
[15]W. Tian, H. Lu, and L. Li, “Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures”, Nano Research, vol. 8, p. 382, 2015.
[16]R. S. Devan, R. A. Patil, J. H. Lin, and Y. R. Ma, “One‐dimensional metal‐oxide nanostructures: recent developments in synthesis, characterization, and applications”, Adv. Funct. Mater., vol. 22, p. 3326, 2012.
[17]S. Dey and S. C. Roy, “Designing TiO2 nanostructures through hydrothermal growth: influence of process parameters and substrate position”, Nano Express, vol. 2, p. 010028, 2021.
[18]D. Wang, X. Zhang, P. Sun, S. Lu, L. Wang, C. Wang, and Y. Liu, “Photoelectrochemical water splitting with rutile TiO2 nanowires array: synergistic effect of hydrogen treatment and surface modification with anatase nanoparticles”, Electrochimica Acta, vol. 130, p. 290, 2014.
[19]H. Li, Q. Yu, Y. Huang, C. Yu, R. Li, J. Wang, F. Guo, S. Jiao, S. Gao, and Y. Zhang, “Ultralong rutile TiO2 nanowire arrays for highly efficient dye-sensitized solar cells”, ACS Appl. Mater. Interfaces, vol. 8, p. 13384, 2016.
[20]X. Sheng, D. He, J. Yang, K. Zhu, and X. Feng, “Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties”, Nano letters, vol. 14, p. 1848, 2014.
[21]B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells”, Journal of the American Chemical Society, vol. 131, p. 3985, 2009.
[22]H. Kim and B. L. Yang, “Effect of seed layers on TiO2 nanorod growth on FTO for solar hydrogen generation”, International Journal of Hydrogen Energy, vol. 40, p. 5807, 2015.
[23]J. Wang, T. Zhang, D. Wang, R. Pan, Q. Wang, and H. Xia, “Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer”, Journal of Alloys and Compounds, vol. 551, p. 82, 2013.
[24]P. Bonderson, C. Nayak, and X.-L. Qi, “A time-reversal invariant topological phase at the surface of a 3D topological insulator”, Journal of Statistical Mechanics: Theory and Experiment, vol. 2013, p. P09016, 2013.
[25]C. Yue, S. Jiang, H. Zhu, L. Chen, Q. Sun, and D. W. Zhang, “Device applications of synthetic topological insulator nanostructures”, Electronics, vol. 7, p. 225, 2018.
[26]L. Huang, Q. Wang, H. Liu, Y. Wu, Y. Yang, G. Ma, Z. Lei, and S. Ren, “N+ irradiation regulates surface defects and doping towards efficient hydrogen evolution reaction on Sb2Te3”, Applied Surface Science, vol. 609, p. 155347, 2023.
[27]J. Chen and X. Ying, “High-performance, ultra-broadband Sb2Te3 photodetector assisted by multimechanism”, AIP Advances, vol. 14, p. 035025, 2024.
[28]H. Liu, D. Li, C. Ma, X. Zhang, X. Sun, C. Zhu, B. Zheng, Z. Zou, Z. Luo, and X. Zhu, “Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p–n heterojunctions for high performance optoelectronics”, Nano Energy, vol. 59, p. 66, 2019.
[29]A. Pandey, R. Yadav, M. Kaur, P. Singh, A. Gupta, and S. Husale, “High performing flexible optoelectronic devices using thin films of topological insulator”, Scientific reports, vol. 11, p. 832, 2021.
[30]J. Liu, H. Wang, X. Li, H. Chen, Z. Zhang, W. Pan, G. Luo, C. Yuan, Y. Ren, and W. Lei, “Ultrasensitive flexible near-infrared photodetectors based on Van der Waals Bi2Te3 nanoplates”, Applied Surface Science, vol. 484, p. 542, 2019.
[31]D. W. Newbrook, S. P. Richards, V. K. Greenacre, A. L. Hector, W. Levason, G. Reid, C. K. de Groot, and R. Huang, “Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generators”, ACS Applied Energy Materials, vol. 3, p. 5840, 2020.
[32]R. Huang, S. L. Benjamin, C. Gurnani, Y. Wang, A. L. Hector, W. Levason, G. Reid, and C. De Groot, “Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition”, Scientific Reports, vol. 6, p. 27593, 2016.
[33]D. B. Patel, K. R. Chauhan, S.-H. Park, and J. Kim, “High-performing transparent photodetectors based on Schottky contacts”, Materials Science in Semiconductor Processing, vol. 64, p. 137, 2017.
[34]J. T. Mazumder, R. Mayengbam, A. Nath, and M. B. Sarkar, “Investigation of structural, optical and electrical properties of TiO2 thin film-nanowire-based device for photodetector application”, Optical Materials, vol. 133, p. 112936, 2022.
[35]M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, and Z. L. Wang, “Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio”, ACS Nano, vol. 10, p. 1572, 2016.
[36]M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.-Q. Zhang, S. Al-Deyab, and Y. Lai, “A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications”, Journal of Materials Chemistry A, vol. 4, p. 6772, 2016.
[37]A. Kumar, A. R. Madaria, and C. Zhou, “Growth of Aligned Single-Crystalline Rutile TiO2 Nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells”, The Journal of Physical Chemistry C, vol. 114, p. 7787, 2010.
[38]Y. Tang, L. Hong, Q. Wu, J. Li, G. Hou, H. Cao, L. Wu, and G. Zheng, “TiO2(B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries”, Electrochimica Acta, vol. 195, p. 27, 2016.
[39]H. Kmentova, S. Kment, L. Wang, S. Pausova, T. Vaclavu, R. Kuzel, H. Han, Z. Hubicka, M. Zlamal, J. Olejnicek, M. Cada, J. Krysa, and R. Zboril, “Photoelectrochemical and structural properties of TiO2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication”, Catalysis Today, vol. 287, p. 130, 2017.
[40]J. Kapusta-Kołodziej, K. Syrek, A. Pawlik, M. Jarosz, O. Tynkevych, and G. D. Sulka, “Effects of anodizing potential and temperature on the growth of anodic TiO2 and its photoelectrochemical properties”, Applied Surface Science, vol. 396, p. 1119, 2017.
[41]J. Shi and X. Wang, “Growth of Rutile Titanium Dioxide Nanowires by Pulsed Chemical Vapor Deposition”, Crystal Growth & Design, vol. 11, p. 949, 2011.
[42]J. Du, X. Gu, H. Guo, J. Liu, Q. Wu, and J. Zou, “Self-induced preparation of TiO2 nanowires by chemical vapor deposition”, Journal of Crystal Growth, vol. 427, p. 54, 2015.
[43]C. Chen, Y. Chen, A. Korotcov, Y. Huang, D. Tsai, and K.-K. Tiong, “Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal–organic chemical vapor deposition”, Nanotechnology, vol. 19, p. 075611, 2008.
[44]T. Cossuet, L. Rapenne, G. Renou, E. Appert, and V. Consonni, “Template-Assisted Growth of Open-Ended TiO2 Nanotubes with Hexagonal Shape Using Atomic Layer Deposition”, Crystal Growth & Design, vol. 21, p. 125, 2021.
[45]J. Sun, W. Zhen, and C. Xue, “Magnetic template-assisted construction of 2D PCN/TiO2 heterostructures for efficient photocatalytic hydrogen generation”, Applied Surface Science, vol. 623, p. 157131, 2023.
[46]F. Xu, H. Tan, J. Fan, B. Cheng, J. Yu, and J. Xu, “Electrospun TiO2-Based Photocatalysts”, Solar RRL, vol. 5, p. 2000571, 2021.
[47]J. Song, R. Guan, M. Xie, P. Dong, X. Yang, and J. Zhang, “Advances in electrospun TiO2 nanofibers: Design, construction, and applications”, Chemical Engineering Journal, vol. 431, p. 134343, 2022.
[48]M. Vahtrus, A. Šutka, S. Vlassov, A. Šutka, B. Polyakov, R. Saar, L. Dorogin, and R. Lõhmus, “Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques”, Materials Characterization, vol. 100, p. 98, 2015.
[49]J. G. Mahy, L. Lejeune, T. Haynes, S. D. Lambert, R. H. M. Marcilli, C.-A. Fustin, and S. Hermans, “Eco-friendly colloidal aqueous sol-gel process for TiO2 synthesis: the peptization method to obtain crystalline and photoactive materials at low temperature”, Catalysts, vol. 11, p. 768, 2021.
[50]Z. Li, Z. Li, C. Zuo, and X. Fang, “Application of nanostructured TiO2 in UV photodetectors: A review”, Adv. Mater., vol. 34, p. 2109083, 2022.
[51]Z. Dong, M. Chen, D. Qin, and S. Han, “Recent advances and perspective of modified TiO2-based photoanodes toward photoelectrochemical water splitting”, Fuel, vol. 373, p. 132366, 2024.
[52]S. Peiris, H. B. de Silva, K. N. Ranasinghe, S. V. Bandara, and I. R. Perera, “Recent development and future prospects of TiO2 photocatalysis”, Journal of the Chinese Chemical Society, vol. 68, p. 738, 2021.
[53]M. Dell’Edera, C. L. Porto, I. De Pasquale, F. Petronella, M. L. Curri, A. Agostiano, and R. Comparelli, “Photocatalytic TiO2-based coatings for environmental applications”, Catalysis Today, vol. 380, p. 62, 2021.
[54]S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, and L. Tayebi, “Biomedical applications of TiO2 nanostructures: recent advances”, International journal of nanomedicine, p. 3447, 2020.
[55]J. M. Rzaij and A. M. Abass, “Review on: TiO2 thin film as a metal oxide gas sensor”, J. Chem. Rev, vol. 2, p. 114, 2020.
[56]S. Palmas, L. Mais, M. Mascia, and A. Vacca, “Trend in using TiO2 nanotubes as photoelectrodes in PEC processes for wastewater treatment”, Current Opinion in Electrochemistry, vol. 28, p. 100699, 2021.
[57]M. Nicolaescu, C. Bandas, C. Orha, V. Şerban, C. Lazău, and S. Căprărescu, “Fabrication of a UV photodetector based on n-TiO2/p-CuMnO2 heterostructures”, Coatings, vol. 11, p. 1380, 2021.
[58]K. M. Chahrour, F. Yam, and R. Abdalrheem, “High-performance UV photodetector of anodic rutile TiO2 nanotube arrays”, Materials Letters, vol. 248, p. 161, 2019.
[59]Y. Zhang, R. Zhou, R. Xu, L. Fang, J. Zhou, Y. Chen, and S. Ruan, “Visible-blind self-powered ultraviolet photodetector based on CuI/TiO2 nanostructured heterojunctions”, ACS Applied Nano Materials, vol. 5, p. 16804, 2022.
[60]Y. Gao, J. Xu, S. Shi, H. Dong, Y. Cheng, C. Wei, X. Zhang, S. Yin, and L. Li, “TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse”, ACS Appl. Mater. Interfaces, vol. 10, p. 11269, 2018.
[61]F. Kara, M. Kurban, and B. Coşkun, “Evaluation of electronic transport and optical response of two-dimensional Fe-doped TiO2 thin films for photodetector applications”, Optik, vol. 210, p. 164605, 2020.
[62]P. K. Yadav, B. Ajitha, C. M. A. Ahmed, Y. A. K. Reddy, and V. R. M. Reddy, “Superior UV photodetector performance of TiO2 films using Nb doping”, Journal of Physics and Chemistry of Solids, vol. 160, p. 110350, 2022.
[63]P. Pooja and P. Chinnamuthu, “Annealed n-TiO2/In2O3 nanowire metal-insulator-semiconductor for highly photosensitive low-noise ultraviolet photodetector”, Journal of Alloys and Compounds, vol. 854, p. 157229, 2021.
[64]S. Ni, Q. Yu, Y. Huang, J. Wang, L. Li, C. Yu, F. Guo, H. Wu, W. Lu, and X. Zhang, “Heterostructured TiO2/MgO nanowire arrays for self-powered UV photodetectors”, RSC advances, vol. 6, p. 85951, 2016.
[65]W. Zheng, Y. Dong, T. Li, J. Chen, X. Chen, Y. Dai, and G. He, “MgO blocking layer induced highly UV responsive TiO2 nanoparticles based self-powered photodetectors”, Journal of Alloys and Compounds, vol. 869, p. 159299, 2021.
[66]R. Cao, J. Xu, S. Shi, J. Chen, D. Liu, Y. Bu, X. Zhang, S. Yin, and L. Li, “High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO2 nanorods”, Journal of Materials Chemistry C, vol. 8, p. 9646, 2020.
[67]Y. Xie, L. Wei, Q. Li, Y. Chen, S. Yan, J. Jiao, G. Liu, and L. Mei, “High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays”, Nanotechnology, vol. 25, p. 075202, 2014.
[68]Z. Pan, Y. Qiu, J. Yang, M. Liu, L. Zhou, Y. Xu, L. Sheng, X. Zhao, and Y. Zhang, “Synthesis of three-dimensional hyperbranched TiO2 nanowire arrays with significantly enhanced photoelectrochemical hydrogen production”, Journal of Materials Chemistry A, vol. 3, p. 4004, 2015.
[69]P.-Y. Hsieh, Y.-H. Chiu, T.-H. Lai, M.-J. Fang, Y.-T. Wang, and Y.-J. Hsu, “TiO2 nanowire-supported sulfide hybrid photocatalysts for durable solar hydrogen production”, ACS Appl. Mater. Interfaces, vol. 11, p. 3006, 2018.
[70]P. Subramanyam, B. Meena, D. Suryakala, and C. Subrahmanyam, “TiO2 photoanodes sensitized with Bi2Se3 nanoflowers for visible–near-infrared photoelectrochemical water splitting”, ACS Applied Nano Materials, vol. 4, p. 739, 2021.
[71]B. Meena, M. Kumar, S. Gupta, L. Sinha, P. Subramanyam, and C. Subrahmanyam, “Rational design of TiO2/BiSbS3 heterojunction for efficient solar water splitting”, Sustainable Energy Technologies and Assessments, vol. 49, p. 101775, 2022.
[72]A. Parbatani, E. S. Song, J. Claypoole, and B. Yu, “High performance broadband bismuth telluride tetradymite topological insulator photodiode”, Nanotechnology, vol. 30, p. 165201, 2019.
[73]H. Lu, D. Li, Y. Li, Z. Yue, and J. Zhao, “Topological insulator plasmonics and enhanced light-matter interactions”, Plasmon-enhanced light-matter interactions, p. 89, 2022.
[74]S. Islam, J. K. Mishra, A. Kumar, D. Chatterjee, N. Ravishankar, and A. Ghosh, “Ultra-sensitive graphene–bismuth telluride nano-wire hybrids for infrared detection”, Nanoscale, vol. 11, p. 1579, 2019.
[75]A. Parbatani, E. S. Song, F. Yang, and B. Yu, “A broadband, self-biased photodiode based on antimony telluride (Sb2Te3) nanocrystals/silicon heterostructures”, Nanoscale, vol. 10, p. 15003, 2018.
[76]W. H. Chang, S. Hatayama, Y. Saito, N. Okada, T. Endo, Y. Miyata, and T. Irisawa, “Sb2Te3/MoS2 van der Waals junctions with high thermal stability and low contact resistance”, Advanced Electronic Materials, vol. 9, p. 2201091, 2023.
[77]J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber”, Optical materials express, vol. 4, p. 1, 2014.
[78]Z. Zeng, T. A. Morgan, D. Fan, C. Li, Y. Hirono, X. Hu, Y. Zhao, J. S. Lee, J. Wang, Z. M. Wang, S. Yu, M. E. Hawkridge, M. Benamara, and G. J. Salamo, “Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs (111) substrates: a potential route to fabricate topological insulator p-n junction”, AIP Advances, vol. 3, p. 072112, 2013.
[79]G. Wang, C. Li, D. Shi, Q. Nie, H. Wang, X. Shen, and Y. Lu, “Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films”, Scientific Reports, vol. 7, p. 1, 2017.
[80]M. Li, Z. Wang, D. Han, X. Shi, T. Li, X. P. Gao, and Z. Zhang, “High photodetection performance on vertically oriented topological insulator Sb2Te3/Silicon heterostructure”, Journal of Solid State Chemistry, vol. 315, p. 123506, 2022.
[81]Y. Zhang, L. Tang, and K. S. Teng, “High performance broadband photodetectors based on Sb2Te3/n-Si heterostructure”, Nanotechnology, vol. 31, p. 304002, 2020.
[82]Z. Yu, W. Han, Z. Yue, B. Cai, Z. Wan, H. Lu, K. See, Z. Cheng, M. Gu, and S. Hu, “Photo-electrochemical effects in topological insulator Sb2Te3 thin films”, Optical Materials, vol. 143, p. 114240, 2023.
[83]Q. Wang, L. Huang, Y. Wu, G. Ma, Z. Lei, and S. Ren, “Role of V doping in core–shell heterostructured Bi2Te3/Sb2Te3 for hydrogen evolution reaction”, International Journal of Hydrogen Energy, vol. 47, p. 21361, 2022.
[84]J. Chen, L. Li, P. Gong, H. Zhang, S. Yin, M. Li, L. Wu, W. Gao, M. Long, L. Shan, F. Yan, and G. Li, “A Submicrosecond-Response Ultraviolet–Visible–Near-Infrared Broadband Photodetector Based on 2D Tellurosilicate InSiTe3”, ACS Nano, vol. 16, p. 7745, 2022.
[85]J. Yao and G. Yang, “2D material broadband photodetectors”, Nanoscale, vol. 12, p. 454, 2020.
[86]Y. Mingmuang, N. Chanlek, M. Takesada, E. Swatsitang, and P. Thongbai, “Pioneering dielectric materials of Sn-doped Nb 0.025 Ti 0.975 O 2 ceramics with excellent temperature and humidity stability for advanced ceramic capacitors”, RSC advances, vol. 14, p. 7631, 2024.
[87]D. Wang, W. Zhao, H. Li, and M. Furuta, “Drain current stress-induced instability in amorphous InGaZnO thin-film transistors with different active layer thicknesses”, Materials, vol. 11, p. 559, 2018.
[88]D. Shin, S. Roy, T. R. Watkins, and A. Shyam, “Lattice mismatch modeling of aluminum alloys”, Computational Materials Science, vol. 138, p. 149, 2017.
[89]Y.-C. Huang, F.-S. Tsai, and S.-J. Wang, “Preparation of TiO2 nanowire arrays through hydrothermal growth method and their pH sensing characteristics”, Japanese Journal of Applied Physics, vol. 53, p. 06JG02, 2014.
[90]D. D. Traficante, “Impedance: What it is, and why it must be matched”, Concepts in Magnetic Resonance, vol. 1, p. 73, 1989.
[91]H. S. Magar, R. Y. Hassan, and A. Mulchandani, “Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications”, Sensors, vol. 21, p. 6578, 2021.
[92]W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, “Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries”, Journal of Electrochemical Science and Technology, vol. 11, p. 1, 2020.
[93]A. C. Lazanas and M. I. Prodromidis, “Electrochemical impedance spectroscopy─ a tutorial”, ACS Measurement Science Au, vol. 3, p. 162, 2023.
[94]T. u. Haq and Y. Haik, “Electrochemical Methods for Measuring Water Splitting Efficiency”, Electrochemical Water Splitting: Fundamentals, Challenges and Advances, p. 71, 2024.
[95]M. Janczarek and E. Kowalska, “Defective dopant-free TiO2 as an efficient visible light-active photocatalyst”, Catalysts, vol. 11, p. 978, 2021.
[96]S. M. Ali and M. M. Khan, “Annealing effects on structural, optical and electrical properties of TiO2/FTO heterojunction”, Applied Physics A, vol. 126, p. 468, 2020.
[97]S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of TiO2”, Surfaces, vol. 1, p. 73, 2018.
[98]S. McDonnell, C. Smyth, C. L. Hinkle, and R. M. Wallace, “MoS2–titanium contact interface reactions”, ACS Appl. Mater. Interfaces, vol. 8, p. 8289, 2016.
[99]M. G. Helander, M. Greiner, Z. Wang, W. M. Tang, and Z. Lu, “Work function of fluorine doped tin oxide”, Journal of Vacuum Science & Technology A, vol. 29, 2011.
[100]Z. Hu and Z. Wu, “Sb2Te3-Based Multilayer Films”, Nanostructured Thermoelectric Films, p. 87, 2020.
[101]G. Hao, X. Qi, G. Wang, X. Peng, S. Chang, X. Wei, and J. Zhong, “Synthesis and characterization of few-layer Sb2Te3 nanoplates with electrostatic properties”, RSC advances, vol. 2, p. 10694, 2012.
[102]B. Li, S. Wu, and X. Gao, “Theoretical calculation of a TiO2-based photocatalyst in the field of water splitting: A review”, Nanotechnology Reviews, vol. 9, p. 1080, 2020.
[103]M. Rafique, S. Hajra, M. Irshad, M. Usman, M. Imran, M. A. Assiri, and W. M. Ashraf, “Hydrogen production using TiO2-based photocatalysts: a comprehensive review”, ACS omega, vol. 8, p. 25640, 2023.
[104]M. Gao, W. Xiao, L. Miao, Z. Yang, W. Liang, T. Ao, Q. Yang, and W. Chen, “Prussian blue and its analogs: A robust platform for efficient capacitive deionization”, Desalination, p. 117278, 2024.
[105]X. Wang, B. He, Z. Hu, Z. Zeng, and S. Han, “Current advances in precious metal core–shell catalyst design”, Science and technology of advanced materials, vol. 15, p. 043502, 2014.
[106]H. Kotake, J. Jia, S.-i. Nakamura, T. Okajima, and Y. Shigesato, “Tailoring the crystal structure of TiO2 thin films from the anatase to rutile phase”, Journal of Vacuum Science & Technology A, vol. 33, p. 041505, 2015.
[107]G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, “Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting”, Nano letters, vol. 11, p. 3026, 2011.
[108]D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, and J. Jiao, “Visible-blind quasi-solid-state UV detector based on SnO2-TiO2 nanoheterostructure arrays”, Journal of Alloys and Compounds, vol. 751, p. 56, 2018.
[109]S. Kumbhar, S. Shaikh, and K. Rajpure, “Hydrothermally-grown TiO2 thin film-based metal–semiconductor–metal UV photodetector”, Journal of Electronic Materials, vol. 49, p. 499, 2020.
[110]G. Wang, F. Ji, J. Li, X. Zhang, H. Wu, Z. Bai, M. Jin, J. Zhou, E. Xie, and X. Pan, “Preparation of a flexible photoanode of the photoelectrochemical ultraviolet photodetector based on rutile TiO2 nanowires and the suppressed charge recombination at solid/liquid interface”, Journal of Physics D: Applied Physics, vol. 57, p. 025101, 2023.
[111]S. Ni, F. Guo, D. Wang, G. Liu, Z. Xu, L. Kong, J. Wang, S. Jiao, Y. Zhang, and Q. Yu, “Effect of MgO surface modification on the TiO2 nanowires electrode for self-powered UV photodetectors”, ACS Sustainable Chemistry & Engineering, vol. 6, p. 7265, 2018.
[112]Z. Wang, J. Xu, S. Shi, J. Chen, J. Xu, L. Kong, X. Zhang, L. Li, and S. Yin, “Self-powered UV photodetector of TiO2 with BaTiO3 surface modification and light-controlled logic circuits application”, ACS Appl. Mater. Interfaces, vol. 15, p. 31943, 2023.
[113]Z. Song, H. Zhou, P. Tao, B. Wang, J. Mei, H. Wang, S. Wen, Z. Song, and G. Fang, “The synthesis of TiO2 nanoflowers and their application in electron field emission and self-powered ultraviolet photodetector”, Materials Letters, vol. 180, p. 179, 2016.
[114]D. Rodríguez and P. Perillo, “Ultra-fast TiO2 nanopores broadband photodetector”, Optical Materials, vol. 135, p. 113315, 2023.
[115]邱治嵩, "還原氧化石墨烯/二氧化鈦奈米棒陣列異質結構之寬頻光感測元件," 碩士, 材料科學與工程學系所, 國立中興大學, 台中市, 2024.
[116]K. K. Manga, J. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High‐performance broadband photodetector using solution‐processible PbSe–TiO2–graphene hybrids”, Adv. Mater., vol. 24, p. 1697, 2012.
[117]M. Landmann, E. Rauls, and W. Schmidt, “The electronic structure and optical response of rutile, anatase and brookite TiO2”, Journal of physics: condensed matter, vol. 24, p. 195503, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊