跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 02:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃仕名
研究生(外文):Shiming-Huang
論文名稱:氮化鋁緩衝層對在矽基板上成長氧化鎵薄膜之影響及其金氧半場效電晶體特性研究
論文名稱(外文):Effects of AlN buffer layers on the growth of Ga2O3-on-silicon films and their MOSFET characteristics
指導教授:武東星林佳鋒林佳鋒引用關係
指導教授(外文):Dong-Sing WuuChia-Feng Lin
口試委員:洪瑞華吳宛玉
口試委員(外文):Ray Hua HorngWan-Yu Wu
口試日期:2024-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:80
中文關鍵詞:氧化鎵濺鍍法緩衝層氣相沉積法功率元件
外文關鍵詞:Gallium oxideMagnetron sputteringBuffer layerChemical vapor depositionPower device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
目錄 iii
圖目錄 vii
表目錄 ix
式目錄 x
第一章 緒論 1
1.1 前言 1
1.2寬能隙半導體功率元件 3
1.2.1金屬氧化物半導體場效電晶體 3
1.2.2蕭特基二極體 4
1.3緩衝層 6
1.4實驗動機 7
1.5論文架構 8
第二章 基礎理論與文獻回顧 9
2.1 氧化鎵材料性質與應用 9
2.1.1 氧化鎵材料特性 9
2.1.2 氧化鎵材料應用 9
2.2 氧化鎵材料製備研究 11
2.2.1 物理氣相沉積法 11
2.2.2 化學氣相沉積法 12
2.3氮化鋁材料特性與應用 14
2.3.1氮化鋁緩衝層 14
2.4金屬氧化物半導體場效電晶體 16
第三章 實驗方法與設備介紹 18
3.1 實驗流程 18
3.1.1 試片清洗 19
3.1.2 射頻磁控濺鍍參數對於氮化鋁薄膜之影響 19
3.1.3 熱退火溫度對氮化鋁薄膜之影響 20
3.1.4 有機金屬化學氣相沉積技術製備氧化鎵薄膜 20
3.2 MOSFET元件製作流程 21
3.2.1 定義元件通道範圍 22
3.2.2 汲極與源極金屬沉積 23
3.2.3 氧化層沉積與蝕刻S/D接觸端 24
3.2.4 閘極金屬沉積 26
3.3 實驗製程設備介紹 27
3.3.1 射頻磁控濺鍍系統(Radio Frequency Magnetron Sputtering System,RF-Sputtering) 27
3.3.2 有機金屬化學氣相沉積系統(Metal-Organic Chemical Vapor Deposition System,MOCVD) 29
3.3.3 無光罩雷射直寫系統(Maskless Laser Direct Writing System ) 30
3.3.4電子束蒸鍍系統(Electron Beam Evaporator System) 31
3.3.5原子層沉積系統(Atomic Layer Deposition System,ALD) 32
3.3.6感應耦合電漿反應式離子蝕刻系統(Inductively-Coupled Plasma Reactive Ion Etching System,ICP-RIE) 33
3.4 實驗分析儀器 34
3.4.1 X光繞射分析儀(X-ray Diffraction Analysis) 34
3.4.2 霍爾效應量測儀(Hall measurement) 35
3.4.3 掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 38
3.4.4 原子力顯微鏡(Atomic Force Microscopy,AFM) 39
3.4.5 N&K光學薄膜量測儀 40
3.4.6 化學分析電子能譜儀 (XPS) 41
3.4.7 半導體量測儀 41
第四章 結果與討論 43
4.1 Sputter製程參數設置 43
4.1.1 製程功率的影響 44
4.1.2 製程氣氛比的影響 45
4.1.3 基板溫度的影響 46
4.1.4 退火溫度的影響 50
4.2緩衝層厚度的影響 55
4.2.1 XRD繞射光譜分析緩衝層厚度對氧化鎵薄膜影響 55
4.2.2 SEM電子顯微鏡分析緩衝層厚度對氧化鎵薄膜影響 56
4.2.3 XPS化學分析電子能譜儀分析緩衝層厚度對氧化鎵的影響 59
4.2.4 AFM原子力顯微鏡分析緩衝層厚度對氧化鎵薄膜影響 60
4.3氧化鎵摻鋅含量對於薄膜性質與電晶體元件性能之影響 62
4.3.1 XRD繞射光譜分析摻雜鋅含量對氧化鎵薄膜影響 62
4.3.2霍爾量測儀與N&K光學薄膜量測儀分析摻雜鋅含量對氧化鎵薄膜影響 63
4.3.3金氧半場效電晶體元件的特性分析 65
第五章 結論與未來展望 71
5.1結論 71
5.2未來展望 72
參考文獻 73
[1] Tong, J., Jiang, Q., Zhang, F., Kang, S. B., Kim, D. H., & Zhu, K. (2020). Wide-bandgap metal halide perovskites for tandem solar cells. ACS Energy Letters, 6(1), 232-248.
[2] Bader, S. J., Lee, H., Chaudhuri, R., Huang, S., Hickman, A., Molnar, A., ... & Palacios, T. (2020). Prospects for wide bandgap and ultrawide bandgap CMOS devices. IEEE Transactions on Electron Devices, 67(10), 4010-4020.
[3] Ballestín-Fuertes, J., Muñoz-Cruzado-Alba, J., Sanz-Osorio, J. F., & Laporta-Puyal, E. (2021). Role of wide bandgap materials in power electronics for smart grids applications. Electronics, 10(6), 677.
[4] Shi, Jueli, et al. "Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices." Advanced materials 33.50 (2021): 2006230.
[5] Yu, Jiangang, et al. "Influence of annealing temperature on structure and photoelectrical performance of β-Ga2O3/4H-SiC heterojunction photodetectors." Journal of Alloys and Compounds 798 (2019), 458-466.
[6] Li, Meng-Qiu, et al. "Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application." Applied Surface Science 471 (2019), 694-702.
[7] Li, Zong-Tao, et al. "Investigation of light-extraction mechanisms of multiscale patterned arrays with rough morphology for GaN-based thin-film LEDs." IEEE Access 7 (2019), 73890-73898.
[8] Lee, Jae Hyung, et al. "Anomalous photovoltaic response of graphene-on-GaN Schottky photodiodes." ACS applied materials & interfaces 10.16 (2018), 14170-14174.
[9] Roccaforte, Fabrizio, et al. "Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices." Microelectronic Engineering 187 (2018), 66-77.
[10] Tsao, J. Y., et al. "Ultrawide‐bandgap semiconductors: research opportunities and challenges." Advanced Electronic Materials 4.1 (2018), 1600501.
[11] Mueller, Thomas, and Ermin Malic. "Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors." npj 2D Materials and Applications 2.1 (2018), 29.
[12] Higashiwaki, Masataka. "β-Ga2O3 material properties, growth technologies, and devices: a review." AAPPS Bulletin 32.1 (2022), 3.
[13] Ahmadi, Elaheh, and Yuichi Oshima. "Materials issues and devices of α-and β-Ga2O3." Journal of Applied Physics 126.16 (2019).
[14] Galazka, Zbigniew. "β-Ga2O3 for wide-bandgap electronics and optoelectronics." Semiconductor Science and Technology 33.11 (2018), 113001.
[15] Razeghi, Manijeh, et al. "A review of the growth, doping, and applications of Beta-Ga2O3 thin films." oxide-based materials and devices IX 10533 (2018), 21-44.
[16] He, Tao, et al. "Broadband ultraviolet photodetector based on vertical Ga2O3/GaN nanowire array with high responsivity." Advanced Optical Materials 7.7 (2019), 1801563.
[17] Cheng, Zhe, et al. "Thermal transport across ion-cut monocrystalline β-Ga2O3 thin films and bonded β-Ga2O3–SiC interfaces." ACS Applied Materials & Interfaces 12.40 (2020), 44943-44951.
[18] Schewski, R., et al. "Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting." Apl Materials 7.2 (2019).
[19] Shin, Gahyun, Hong-Yeol Kim, and Jihyun Kim. "Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction." Korean Journal of Chemical Engineering 35 (2018), 574-578.
[20] Alema, Fikadu, et al. "Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film." APL Materials 7.2 (2019).
[21] Yadav, Manoj K., et al. "Impact of annealing temperature on band-alignment of PLD grown Ga2O3/Si (100) heterointerface." J. of Alloys and Compounds 819 (2020), 153052.
[22] J. H. Choi, et al., ECS Journal of Solid State Science and Technology, 5 (2016) P4521-P4525.
[23] R. Schewski, et al., Journal of Crystal Growth, 505 (2019) 24-29.
[24] Österlund, Elmeri, et al. "Mechanical properties and reliability of aluminum nitride thin films." Journal of Alloys and Compounds 772 (2019), 306-313.
[25] Moatti, A., and J. Narayan. "High-quality TiN/AlN thin film heterostructures on c-sapphire." Acta Materialia 145 (2018), 134-141.
[26] Alsaad, A. M., et al. "Measurement and ab initio investigation of structural, electronic, optical, and mechanical properties of sputtered aluminum nitride thin films." Frontiers in Physics 8 (2020), 115.
[27] Gao, Chong, et al. "High-Performance Solar-Blind Ultraviolet Photodetectors Based on β-Ga2O3 Thin Films Grown on p-Si (111) Substrates with Improved Material Quality via an AlN Buffer Layer Introduced by Metal–Organic Chemical Vapor Deposition." ACS Applied Materials & Interfaces 15.32 (2023), 38612-38622.
[28] Ratnesh, Ratneshwar K., et al. "Advancement and challenges in MOSFET scaling." Materials Science in Semiconductor Processing 134 (2021), 106002.
[29] Tetzner, Kornelius, et al. "Challenges to overcome breakdown limitations in lateral β-Ga2O3 MOSFET devices." Microelectronics Reliability 114 (2020), 113951.
[30] Ezhilmaran, Bhuvaneshwari, et al. "Recent developments in the photodetector applications of Schottky diodes based on 2D materials." J. Materials Chemistry C 9.19 (2021), 6122-6150.
[31] Lin, Shisheng, et al. "A high current density direct‐current generator based on a moving van der Waals Schottky diode." Advanced Materials 31.7 (2019), 1804398.
[32] Yue, Jin, et al. "Depletion mode MOSFET using La-doped BaSnO3 as a channel material." ACS applied materials & interfaces 10.25 (2018), 21061-21065.
[33] Wong, Man Hoi, et al. "Enhancement-Mode $eta $-Ga 2 O 3 Current Aperture Vertical MOSFETs With N-Ion-Implanted Blocker." IEEE Electron Device Letters 41.2 (2019), 296-299.
[34] Shockley, William, and Hans Queisser. "Detailed balance limit of efficiency of p–n junction solar cells." Renewable Energy. Routledge, 2018. Vol2_35-Vol2_54.
[35] Zheng, Yue, et al. "Ohmic contact engineering for two-dimensional materials." Cell Reports Physical Science 2.1 (2021).
[36] Liu, Zeng, et al. "Review of gallium oxide based field-effect transistors and Schottky barrier diodes." Chinese Physics B 28.1 (2019), 017105.
[37] Wahl, Tina, et al. "Sputtered indium zinc oxide rear electrodes for inverted semitransparent perovskite solar cells without using a protective buffer layer." Organic Electronics 54 (2018), 48-53.
[38] Lu, Jiang, et al. "Impact of varied buffer layer designs on single-event response of 1.2-kV SiC power MOSFETs." IEEE Transactions on Electron Devices 67.9 (2020), 3698-3704.
[39] Kim, Jeong-Gil, et al. "High breakdown voltage and low-current dispersion in AlGaN/GaN HEMTs with high-quality AlN buffer layer." IEEE Transactions on Electron Devices 68.4 (2021), 1513-1517.
[40] Heuken, L., et al. "Analysis of an AlGaN/AlN super-lattice buffer concept for 650-V low-dispersion and high-reliability GaN HEMTs." IEEE Transactions on Electron Devices 67.3 (2020), 1113-1119.
[41] Kim, Tae Woong, et al. "Self‐Organized Superlattice and Phase Coexistence inside Thin Film Organometal Halide Perovskite." Advanced Materials 30.8 (2018): 1705230.
[42] Lyons, John L. "A survey of acceptor dopants for β-Ga2O3." Semiconductor science and technology 33.5 (2018), 05LT02.
[ 43] Roccaforte, Fabrizio, et al. "Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices." Microelectronic Engineering 187 (2018), 66-77.
[44] Yadav, Manoj K., et al. "Impact of annealing temperature on band-alignment of PLD grown Ga2O3/Si (100) heterointerface." Journal of Alloys and Compounds 819 (2020), 153052.
[45] Li, Shaofang, et al. "The influence of sputtering power on the structural, morphological and optical properties of β-Ga2O3 thin films." Journal of Alloys and Compounds 753 (2018), 186-191.
[46] Yao, Yao, et al. "Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques." Materials Research Letters 6.5 (2018), 268-275.
[47] Cheng, Zhe, et al. "Experimental observation of high intrinsic thermal conductivity of AlN." Physical Review Materials 4.4 (2020), 044602.
[48] Xu, Runjie Lily, et al. "Thermal conductivity of crystalline AlN and the influence of atomic-scale defects." Journal of Applied Physics 126.18 (2019).
[49] Rounds, Robert, et al. "Thermal conductivity of single-crystalline AlN." Applied Physics Express 11.7 (2018), 071001.
[50] Susilo, Norman, et al. "AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire." Applied Physics Letters 112.4 (2018).
[51] Wei, Hongyang, et al. "Effects of the key parameters of TRISO particle buffer layer on in-pile thermo-mechanical behavior in FCM fuel pellets." Journal of Nuclear Materials 551 (2021), 152977.
[52] Jorudas, Justinas, et al. "AlGaN/GaN on SiC devices without a GaN buffer layer: Electrical and noise characteristics." Micromachines 11.12 (2020), 1131.
[53] Yen, Chao-Chun, et al. "Interface engineering in epitaxial growth of sputtered β-Ga2O3 films on Si substrates via TiN (111) buffer layer for Schottky barrier diodes." Materials Today Advances 17 (2023), 100348.
[54] Mehta, Mahek, et al. "Low Interface Resistance in Epitaxial β-Ga2O3 Vertical Power Diodes on Silicon (100) Using TiN Buffer." ACS Applied Electronic Materials 6.3 (2024), 2084-2092.
[55] Su, Jie, et al. "Unveiling the Orientation Growth Mechanism and Solar-Blind Response Performance of Β-Ga2o3 (100) Film on Sic Substrate with Aln Buffer Layer." Liang and He, Fuchao and Feng, Liping and Chang, jingjing and Zhang, Jincheng and Hao, Yue, Unveiling the Orientation Growth Mechanism and Solar-Blind Response Performance of Β-Ga2o3 (100) Film on Sic Substrate with Aln Buffer Layer.
[56] Hu, Yu, et al. "Effects of growth temperature on phase transformation and crystal quality of Ga2O3 films grown on Si/AlN composite substrates by MOCVD." Materials Science in Semiconductor Processing 178 (2024), 108453.
[57] Madadi, D., & Orouji, A. A. (2021). β-Ga2O3 double gate junctionless FET with an efficient volume depletion region. Physics Letters A, 412, 127575.

[58] Arsalan, M., Liu, J., Zaslavsky, A., Cristoloveanu, S., & Wan, J. (2020). Deep-depletion effect in SOI substrates and its application in photodetectors with tunable responsivity and detection range. IEEE Transactions on Electron Devices, 67(8), 3256-3262.
[59] Masante, C., Rouger, N., & Pernot, J. (2021). Recent progress in deep-depletion diamond metal–oxide–semiconductor field-effect transistors. Journal of Physics D: Applied Physics, 54(23), 233002.
[60] Ren, J., & Jen, T. C. (2021). Atomic layer deposition (ALD) assisting the visibility of metal-organic frameworks (MOFs) technologies. Coordination Chemistry Reviews, 430, 213734.
[61] Hernández, A., Arab, J. P., Reyes, D., Lapitz, A., Moshage, H., Bañales, J. M., & Arrese, M. (2020). Extracellular vesicles in NAFLD/ALD: from pathobiology to therapy. Cells, 9(4), 817.
[62] Oyakhire, S. T., Huang, W., Wang, H., Boyle, D. T., Schneider, J. R., de Paula, C., ... & Bent, S. F. (2020). Revealing and elucidating ALD‐derived control of lithium plating microstructure. Advanced Energy Materials, 10(44), 2002736.
[63] Richey, N. E., De Paula, C., & Bent, S. F. (2020). Understanding chemical and physical mechanisms in atomic layer deposition. The Journal of chemical physics, 152(4).
[64] Epp, J. (2016). X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods (pp. 81-124). Woodhead Publishing.
[65] Khan, H., Yerramilli, A. S., D'Oliveira, A., Alford, T. L., Boffito, D. C., & Patience, G. S. (2020). Experimental methods in chemical engineering: X‐ray diffraction spectroscopy—XRD. The Canadian journal of chemical engineering, 98(6), 1255-1266.
[66] Fatimah, S., Ragadhita, R., Al Husaeni, D. F., & Nandiyanto, A. B. D. (2022). How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method. ASEAN Journal of Science and Engineering, 2(1), 65-76.
[67] Du, Z. Z., Lu, H. Z., & Xie, X. C. (2021). Nonlinear hall effects. Nature Reviews Physics, 3(11), 744-752.
[68] Feng, Z., Zhou, X., Šmejkal, L., Wu, L., Zhu, Z., Guo, H., ... & Liu, Z. (2022). An anomalous Hall effect in altermagnetic ruthenium dioxide. Nature Electronics, 5(11), 735-743.
[69] Müller, D. J., Dumitru, A. C., Lo Giudice, C., Gaub, H. E., Hinterdorfer, P., Hummer, G., ... & Alsteens, D. (2020). Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chemical reviews, 121(19), 11701-11725.
[70] Magazzù, A., & Marcuello, C. (2023). Investigation of soft matter nanomechanics by atomic force microscopy and optical tweezers: A comprehensive review. Nanomaterials, 13(6), 963.
電子全文 電子全文(網際網路公開日期:20290822)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊