[1] J.E. Thorne, Y. He, D. Wang, Nanostructured Materials, in: S. Giménez, J. Bisquert, Photoelectrochemical Solar Fuel Production From Basic Principles to Advanced Devices, Springer, Cham, 2016, pp. 463-492.
[2] R. van de Krol, M. Grätzel, Photoelectrochemical Hydrogen Production, Springer, New York, 2012, pp. 13, 55-56.
[3] Y.-Y Pai, T.-T. A, P. Irvin, J.Levy, Physics of SrTiO3-based heterostructures and nanostructures: a review, Rep. Prog. Phys. 81 (2018) 036503.
[4] M. N. Gastiasoro, J. Ruhman, R. M. Fernandes, Superconductivity in dilute SrTiO3: a review, Ann. Phys. 417 (2020) 168107.
[5] S. Patial, V. Hasija, P. Raizada, P. Singh , A. A. P. K . Singh, A. M. Asiri, Tunable photocatalytic activity of SrTiO3 for water splitting: strategies and future scenario, J. Environ. Chem. Eng. 8 (2020) 103791.
[6] Y. Wang, J. Zhang, M.S. Balogun, Y. Tong, Y. Huang, Oxygen vacancy-based metal oxides photoanodes in photoelectrochemical water splitting, Mater. Today Sustain. 18 (2022) 100118.
[7] J. Li, X.-G. Tang, Q.-X. Liu, Y.-P. Jiang, W.-H. Li, Enhancement of the photoelectric properties of composite oxide TiO2 SrTiO3 thin films, Adv. Compos. Hybrid Mater. (2021) 27.
[8] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
[9] C. Hou, J. Wang, W. Zhang, J. Li, R. Zhang, J. Zhou, Y. Fan, D. Li, F. Dang, J. Liu, Y. Li, K. Liang, B. Kong, Interfacial superassembly of grape-Like MnO−Ni@C frameworks for superior lithium storage, ACS Appl. Mater. Interfaces 12 (2020) 13770-13780.
[10] X. Zhang, K. Huo, L. Hu, Z. Wu, P. K. Chu, Synthesis and photocatalytic activity of highly ordered TiO2 and SrTiO3/TiO2 nanotube arrays on Ti substrates, J. Am. Ceram. Soc. 93 (2010) 2771-2778.
[11] H. O. Pierson, Handbook of refractory carbides and nitrides properties, Characteristics, processing and applications, Noyes Publications, New Jersey (1996) 193.
[12] S. Feng, G. Li, Hydrothermal and Solvothermal Syntheses, in: R. Xu, W. Pang, Q. Huo, Modern Inorganic Synthetic Chemistry, 2011, pp. 63-95.
[13] C. Zoski, Handbook of Electrochemistry, Elsevier, 2006, pp.3-7.
[14] M. Grätzel, Photoelectrochemical cells, Nature 414 (2001) 338-344.
[15] E. Bequerel, Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen descourants électriques. C.R. Acad. Sci. 9 (1839) 145–149.
[16] A.Mills, S. L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem. 108 (1997) 1081-35.
[17] K.-H. Ye, H. Li, D. Huang, S. Xiao, W. Qiu, M.Li, Y. Hu, W. Mai, H. Ji, S. Yang, Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering, Nat. Commun. 10 (2019) 1-9.
[18] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
[19] I. R. Hamdani, A. N. Bhaskarwar, Recent progress in material selection and device designs for photoelectrochemical water-splitting, Renewable Sustainable Energy. Rev. 138 (2021) 110503.
[20] S. T. Kochuveedu, Photocatalytic and photoelectrochemical water splitting on TiO2 via photosensitization, J. Nanomater. (2016) 1-12.
[21] T. J. Jacobsson, Photoelectrochemical water splitting: an idea heading towards obsolescence?, Energy Environ. Sci. 11 (2018) 1977-1979.
[22] R. Richard, J. Law (Eds.), A Dictionary of Physics, 8th ed, Oxford University Press, United Kingdom, 2019.
[23] R. C. Pawar, C. S. Lee, Heterogeneous Nanocomposite Photocatalysis for Water Purification, 1st Edition., Elsevier, USA, 2015, pp. 1-23.
[24] J.-G. Yu, X. Li, J.-X. Low, Semiconductor solar photocatalysts: fundamentals and applications, 1st ed. Wiley-VCH, 2022.
[25] G. Wang, Y. Yang, D. Han, Y. Li, Oxygen defective metal oxides for energy conversion and storage, Nano Today 13 (2017) 23-39.
[26] A. Sinhamahapatra , J.-P. Jeon, J. Kang, B. Han, J. S. Yu, Oxygendeficient zirconia (ZrO2-x): a new material for solar light absorption, Sci. Rep. 6 (2016) 27218.
[27] S. Wang, P. Chen, Y. Bai, J. H. Yun, G. Liu, L. Wang, New BiVO4 dual Photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting, Adv. Mater. 30 (2018) 1800486.
[28] B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation, Angew Chem Int Ed. 57 (2018) 2248-2252.
[29] J. Nowotny, T. Bak, M. A. Alim, Defect disorder of TiO2. Equilibrium constant for the formation of oxygen vacancies, ECS Solid State Lett. 3 (2014) Q71-Q75.
[30] Z. Wang, X. Mao, P. Chen, Understanding the roles of oxygen vacancies in hematite-based Photoelectrochemical processes, Angew. Chem. Int. Ed. 58 (2019) 1030-1034.
[31] M. Anpo, S. Dzwigaj, M. Che, Applications of Photoluminescence Spectroscopy to the Investigation of OxideContaining Catalysts in the Working State, in: B. C. Gates, H. Knözinger, Advances in Catalysis, Volume 52, 2009, pp. 1-42.
[32] R.-A. Eichel, Structural and dynamic properties of oxygen vacancies in perovskite oxides-analysis of defect chemistry by modern multi-frequency and pulsed EPR techniques, Phys. Chem. Chem. Phys. 13 (2011) 368-384.
[33] Z. Wang, L. Wang, Role of oxygen vacancy in metal oxide based photoelectrochemical water splitting, EcoMat. 3 (2021) e12075.
[34] E. P. Randviir, C. E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Anal. Methods, 5 (2013) 1098-1115.
[35] C. M. A. Brett, Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors, Molecules 27 (2022) 1497.
[36] J.-M. Zen, G. Ilangovan, J.-J. Jou, Square-Wave voltammetric determination and ac impedance study of dopamine on preanodized perfluorosulfonated ionomer-coated glassy carbon electrodes, Anal. Chem. 71 (1999) 2797-2805.
[37] K.Wysmulek, J. Sar, P. Osewski, K. Orlinski, K. Kolodziejak, A. T. Zajac, M. Radecka, D. A. Pawlak, A SrTiO3-TiO2 eutectic composite as a stable photoanode material for photoelectrochemical hydrogen production, Appl. Catal. B: Environ. 206 (2017) 538-546.
[38] 余錦智,以低溫水熱法及化學電池作用於TiN膜上製備鈦酸鋇膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2005)。[39] Y.-C. Chieh, C.-C. Yu, F.-H. Lu, Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method, Appl. Phys. Lett. 90 (2007) 032904-032906.
[40] 鄧煥平,以低溫水熱-化學電池法於鍍氮化鋯膜矽基材上製備鋯酸鋇膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2007)。[41] 趙玲夙,以低溫水熱-化學電池法於鍍鈦膜矽基材上製備具有生物活性之奈米NaHTi3O7薄膜研究,國立中興大學材料科學與工程學系碩士學位論文(2009)。[42] P.-H. Chan, F.-H. Lu, Low-temperature hydrothermal–galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrates, Thin Solid Films 517 (2009) 4782–4785.
[43] 蔡迪佑,以水熱-化學電池法於TiN膜上製備鈦酸鋇膜及其成長動力學分析,國立中興大學材料科學與工程學系碩士學位論文(2010)。[44] 林佳君,以水熱-化學電池法於不同表面形貌及電阻率之 TiN/Si 上製備SrTiO3膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2011)。[45] 簡榛密,以水熱-化學電池法在鍍氮化鈦膜基材上製備鈦酸鋇膜與應用於天線之研究,國立中興大學材料科學與工程學系碩士學位論文(2012)。[46] 蔡右相,水熱-化學電池法中以低Sr離子濃度生成SrTiO3薄膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2013)。[47] C.-J. Yang, D.-Y. Tsai, P.-H. Chan, C.-T. Wu, F.-H. Lu, Hydrothermal- galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrate, Thin Sold Films 542 (2013) 108-113.
[48] 陳祺涵,以低Ba離子濃度在水熱-化學電池法生成BaTiO3薄膜之探討,國立中興大學材料科學與工程學系碩士學位論文(2014)。[49] Y.-H. Tsai, Y.-C. Chieh, F.-H. Lu, Influence of Sr+2 concentrations on growth of SrTiO3 thin films synthesized by hydrothermal–galvanic couple method, Thin Solid Films 570 (2014) 479–485.
[50] 吳効泓,以水熱-化學電池法於ZrN/Si上製備BaZrO3薄膜及成長機制分析,國立中興大學材料科學與工程學系碩士學位論文(2015)。[51] 詹薰述,以水熱-化學電池法於TiN/Si基材上製備BaxSr1-xTiO3薄膜之特性研究,國立中興大學材料科學與工程學系碩士學位論文(2015)。[52] 詹佩諠,低溫水熱化學電池法於氮化鈦膜上製備 鈦酸鍶鋇薄膜之研究,國立中興大學材料科學與工程學系博士學位論文(2015)。[53] 黃亭瑞,以水熱-化學電池法於ZrN/Si雙電極製備BaZrO3薄膜並應用於光電流之研究,國立中興大學材料科學與工程學系碩士學位論文(2019)。[54] H.-P. Teng, C.-C. Lin, F.-H. Lu, A facile growth control of perovskite SrTiO3 thin films by tailoring surface morphologies of TiN seeding layers in the hydrothermal-galvanic couple synthesis, Thin Solid Films 570 (2014) 479-485.
[55] 黃詩棋,以水熱‐化學電池法在雙TiN薄膜電極系統製備鈦酸鋇薄膜及其應用研究,國立中興大學材料科學與工程學系碩士學位論文(2020)。[56] 鄭羽蓁,以水熱-化學電池法於氮化物薄膜電極上製備鋁與氮摻雜鈦酸鋇薄膜及特性分析,國立中興大學材料科學與工程學系碩士學位論文(2021)。[57] 周沛澐,水熱-化學電池法製備氮摻雜鈦酸鍶薄膜之特性分析並輔以第一原理計算,國立中興大學材料科學與工程學系碩士學位論文(2022)。[58] 張銘芳,水熱-化學電池法製備高光電化學反應之BaTiO3/TiO2異質結構薄膜並輔以第一原理計算,國立中興大學材料科學與工程學系碩士學位論文(2022)。[59] J. Zhang, J. H. Bang, C. Tang, P. V. Kamat, Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance, ACS Nano 4 (2010) 387-395.
[60] X. Yue, J. Zhang, F. Yan, X. Wang, F. Huang, A situ hydrothermal synthesis of SrTiO3/TiO2 heterostructure nanosheets with exposed (0 0 1) facets for enhancing photocatalytic degradation activity, Appl. Surf. Sci. 319 (2014) 68-74.
[61] Y.-F. Zhu, L. Xu, J. Hu, J. Zhang, R.-G. Du, C.-J. Lin, Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel, Electrochim. Acta (2014) 361-368.
[62] J. Zhou, L. Yin, K. Zha, H. Li, Z. Liu, J. Wang, K. Duan, B. Feng, Hierarchical fabrication of heterojunctioned SrTiO3/TiO2 nanotubes on 3D microporous Ti substrate with enhanced photocatalytic activity and adhesive strength, Appl. Surf. Sci. (2016) 118-125.
[63] K. Wysmulek, J. Sar, P. Osewski, K. Orlinski, K. Kolodziejak, M. Radecka, D. A. Pawlak, A SrTiO3-TiO2 eutectic composite as a stable photoanode material for photoelectrochemical hydrogen production, Appl. Catal. B 206 (2017) 538-546.
[64] O. khemakhem, J. Bennaceur, W. C.-Koubaa, M. Koubaa, R. Chtourou, A. Cheikhrouhou, Enhanced photoelectrochemical photocatalytic activities in hydrothermal synthesized SrTiO3/TiO2 heterostructure thin films, J. Alloys Compd. 696 (2017) 682-687.
[65] N. Khare, G. Razzini, L. P. Bicelli, Photoelectrochemical, electrolyte electroreflectance and topological characterization of electrodeposited CuInSe2 films, Solar Cells 31 (1991) 283-295.
[66] Q.-Y. Chen, H.-X. Tong, Z.-L. Yin, H.-P. Hu, J. Li, L.-L. Liu, Preparation, Characterization and Photocatalytic Behavior of TiO2 Catalysts with Oxygen Vacancies, Acta Phys. Chim. Sin. 23(12) (2007) 1917-1921.
[67] M. E. Zvanut, S. Jeddy, E. Towett, G. M. Janowski, C. Brooks, D. Schlom, An annealing study of an oxygen vacancy related defect in SrTiO3 substrates, J. Appl. Phys. 104 (2008) 064122.
[68] C. Fabrega, T. Andreu, F. Guell, J. D. Prades, S. Estrad, J. M. Rebled, F. Peiro, J. R. Morante, Effectiveness of nitrogen incorporation to enhance the photoelectrochemical activity of nanostructured TiO2:NH3 versus H2-N2 annealing, Nanotechnology 22 (2011) 235403.
[69] H. Trabelsi, M. Bejar, E. Dhahri, M. P. F. Graca, M. A. Valente, M. J. Soares, N. A. Sobolev, Raman, EPR and ethanol sensing properties of oxygen-Vacancies SrTiO3-σ compounds, Appl. Surf. Sci. 426 (2017) 386-390.
[70] L. Xu, X. Ma, N. Sun, F. Chen, Bulk oxygen vacancies enriched TiO2 and its enhanced visible photocatalytic performance, Appl. Surf. Sci. 441 (2018) 150-155.
[71] B.D. Cullity, S.R. Stock, Elements of x-ray diffraction, 3th ed., Prentice Hall, New York, 2001, pp. 367-388.
[72] S. Yurdakal, C. Garlisi, L. Ö zcan, M. Bellardita, G. Palmisano, (Photo)catalyst Characterization Techniques: Adsorption Isotherms and BET, SEM, FTIR, UV– Vis, Photoluminescence, and Electrochemical Characterizations, in Heterogeneous Photocatalysis, Elsevier, Italy, 2019, pp.87-152.
[73] Y. Yamada, Y. Kanemitsu, Band-to-band photoluminescence in SrTiO3, Phys. Rev. B 82 (2010) 121103.
[74] C. Zhang, Y. Jia, Y. Jing, Y. Yao, J. Ma, J. Sun, Effect of non-metal elements (B, C, N, F, P, S) mono-doping as anions on electronic structure of SrTiO3, Comput. Mater. Sci. 79 (2013) 69-74.
[75] L. Gu, H. Wei, Z. Peng, H. Wu, Defects enhanced photocatalytic performances in SrTiO3 using laser-melting treatment, J. Mater. Res. 32 (2017) 748-756.
[76] G. Niu, P. Zaumseil, M.A. Schubert, M.H. Zoellner, J. Dabrowski, T. Schroede, Lattice-matched epitaxial ternary PrxY2−xO3 films on SrO-passivated Si (001): Interface engineering and crystallography tailoring, Appl. Phys. Lett. 102 (2013) 011906.
[77] S. Fuentes, E. Chávez, L. Padilla-Campos, D.E. Diaz-Droguett, Influence of reactant type on the Sr incorporation grade and structural characteristics of 121 Ba1−xSrxTiO3 (x=0−1) grown by sol–gel-hydrothermal synthesis, Ceram. Int. 39 (2013) 8823–8831.
[78] X. Huang, X. Gao, Q. Xue, C. Wang, R. Zhang, Y. Gao, Z. Han, Impact of oxygen vacancies on TiO2 charge carrier transfer for photoelectrochemical water splittin, Dalton Trans. 49 (2020) 2184–2189.
[79] X. Bi, G. Du, A. Kalam, D. Sun, Y. Yu, Q. Su, B. Xu, A. G. Al-Sehemi, Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance, Chem. Eng. Sci. 234 (2021) 116440.
[80] X. Liang, Q. He, J. Zhang, X. Ding, Y. Gao, W. Chen, K. H.L. Zhang, C. Y. Haw, Enhanced photo-carrier transportation at semiconductor/electrolyte interface of TiO2 photoanode by oxygen vacancy engineering, Appl. Surf. Sci. 597 (2022) 153744.
[81] D. Shindo, T. Oikawa, Energy Dispersive X-ray Spectroscopy. In: Analytical Electron Microscopy for Materials Science. Springer, Tokyo, 2002.
[82] M. Radecka, E. Pamula, A. Trenczek-Zajac, K. Zakrzewska, A. Brudnik, E. Kusior, N.T.H. Kim-Ngan, A.G. Balogh, Chemical composition, crystallographic structure and impedance spectroscopy of titanium oxynitride TiNxOy thin films, Solid State Ioni, 192 (2011) 693-698.
[83] O. khemakhem, J. Bennaceur, W. C.-Koubaa, M. Koubaa, R. Chtourou, A. Cheikhrouhou, Enhanced photoelectrochemical photocatalytic activities in hydrothermal synthesized SrTiO3/TiO2 heterostructure thin films, J. Alloys Compd. 696 (2017) 682-687.
[84] J. Zhou, L. Yin, K. Zha, H.-R. Li, Z.-Y. Liu, J.-X. Wang, K. Duan, B. Feng, Hierarchical fabrication of heterojunctioned SrTiO3/TiO2 nanotubes on 3D microporous Ti substrate with enhanced photocatalytic activity and adhesive strength, Appl. Surf. Sci. 367 (2016) 118-125.
[85] H.-X. Lin, L.-Y. Ding, Z.-X. Pei, Y.-G. Zhou, J.-L. Long, W.-H. Deng, X.-X. Wang, Au deposited BiOCl with different facets: On determination of the facet-induced transfer preference of charge carriers and the different plasmonic activity, Appl. Catal. B. 160-161 (2014) 98-105.
[86] L.M. Peter, A.B. Walker, T. Bein, A.G. Hufnagel, I. Kondofersky, Interpretation of photocurrent transients at semiconductor electrodes: Effects of band-edge unpinning, J. Electroanal. Chem. 872 (2020) 114234.
[87] E. P. Randviir, C. E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Anal. Methods 5 (2013) 1098–1115.
[88] A. Hankin, F. E. B.-Lora, J. C. Alexander, A. Regoutz, G. H. Kelsall, Flat band potential determination: avoiding the pitfalls, J. Mater. Chem. A. 7 (2019) 26162.
[89] D. Liu, Z. Yan, P. Zeng, H. Liu, T. Peng, R. Li, In situ grown TiN/N-TiO2 composite for enhanced photocatalytic H2 evolution activity, Front. Energy 15 (2021) 721-731.
[90] F. Wei, Y. Liu, H. Zhao, X. Ren, J. Liu, T. Hasan, L. Chen, Yu Li, B.-L. Su, Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance, Nanoscale 10 (2018) 4515.
[91] 張廷嘉,以水熱-化學電池法於氮氧化鈦薄膜電極製備鈦酸鋇薄膜,國立中興大學材料科學與工程學系碩士學位論文(2020)。[92] 李至宜,以水熱-化學電池法在TiN薄膜電極上製備不同優選方向之鈦酸鋇薄膜及應用研究,國立中興大學材料科學與工程學系碩士學位論文(2021)。[93] 張峻誠,以電漿電解氧化法於TiN電極製備氮摻雜之鈦酸鋇薄膜,國立中興大學材料科學與工程學系碩士學位論文(2022)。[94] H. Tan, Z. Zhao, W. Zhu, E. N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, Z. Sun, Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3, ACS Appl. Mater. Interfaces 6 (2014) 19184–19190.
[95] D. Hertkorn, M. Benkler, U. Gleißner, F. Büker, C. Megnin, C. Müller, T. Hanemann, H. Reinecke, Morphology and oxygen vacancy investigation of strontium titanatebased photo electrochemical cells, J. Mater. Sci. 50 (2015) 40-48.
[96] C.A. Randall, P. Yousefian, Fundamentals and practical dielectric implications of stoichiometry and chemical design in a high-performance ferroelectric oxide: BaTiO3, J. Eur. Ceram. Soc. 42 (2022) 1445-1473.
[97] T. Bak, J. Nowotny, M. K. Nowotny, Defect disorder of titanium dioxide, J. Phys. Chem. B 110 (2006) 21560–21567.
[98] M. Siebenhofer, F. Baiutti, J. D. Sirvent, T. M. Huber, A. Viernstein, S. Smetaczek, C. Herzig, M. O. Liedke, M. Butterling, A. Wagner, E. Hirschmann, A. Limbeck, A. Tarancon, J. Fleig, M. Kubicek, Exploring point defects and trap states in undoped SrTiO3 single crystals, J. Eur. Ceram. Soc. 42 (2022) 1510–1521.
[99] B. Santara1, P. K.Giri, S. Dhara, K. Imakita, M. Fujii, Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons, J. Phys. D: Appl. Phys. 47 (2014) 235304.
[100] J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li, Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture, J. Phys. Chem. C 111 (2007) 693-699.
[101] J.-H. Yan, Y.-R. Zhu, Y.-G. Tang, S.-Q. Zheng, Nitrogen-doped SrTiO3/TiO2 composite photocatalysts for hydrogen production under visible light irradiation, J. Alloys Compd. 472 (2009) 429–433.
[102] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B 107 (2003) 5483-5486.
[103] X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications, Nanoscale (2013) 5 3601.
[104] M. Du, Q. Chen, Y. Wang, J. Hu, X. Meng, Synchronous construction of oxygen vacancies and phase junction in TiO2 hierarchical structure for enhancement of visible light photocatalytic activity, J. Alloys Compd. 830 (2020) 154649.
[105] M. M. Khan, S. A. Ansari, D. Pradhan, M. O. Ansari, D. H. Han, J. Lee, M. H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. 2 (2014) 637-644.
[106] Y. Ye, B. Liao, M. Li, M. Mai, L. Zhang, L. Ma, D. Lin, J. Zhao, D. Chen, X. Ma, Boosting photoelectrochemical chlorine and hydrogen production with oxygen vacancy rich TiO2 photoanodes, J. Alloys Compd. 947 (2023) 169480.
[107] C. Fan, C. Chen, J. Wang, X. Fu, Z. Ren, G. Qian, Z. Wang, Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity, Sci. Rep. 5 (2015) 11712.
[108] X. Hou, M. Shang, Y. Bi, Z. Jiao, Synthesis of Ti3+ self-doped SrTiO3/TiO2 hetero-photoanodes with enhanced photoelectrochemical performances under visible light, Mater. Lett. 176 (2016) 270-273.
[109] L. Fanga, J. Chenb, M. Zhanga, X. Jiangd, Z. Sun, Introduction of Ti3+ ions into heterostructured TiO2 nanotree arrays for enhanced photoelectrochemical performance, Appl. Surf. Sci. 490 (2019) 1-6.
[110] C. Wua, Z. Gao, S. Gao, Q. Wang, H. Xu, Z.Wang,B. Huang, Y. Dai, Ti3+ self-doped TiO2 photoelectrodes for photoelectrochemical water splitting and photoelectrocatalytic pollutant degradation, J. Energy Chem. 25 (2016) 726-733.
[111] T. Łęckia, K. Zarębska, K. Sobczak, M. Skompska, Photocatalytic degradation of 4-chlorophenol with the use of FTO/TiO2/SrTiO3 composite prepared by microwave-assisted hydrothermal method, Appl. Surf. Sci. 470 (2019) 991-1002.
[112] Y. Lia, J.-G Wanga, Y. Fanb, H. Suna, W. Huaa, H. Liua, B. Wei, Plasmonic TiN boosting nitrogen-doped TiO2 for ultrahigh efficient photoelectrochemical oxygen evolution, Appl. Catal. B: Environ. 246 (2019) 21-29.
[113] Y. Liu, M. Peng, K. Gao, R. Fu, S. Zhang, Y. Xiao, J. Guo, Z. Wang, H. Wang, Y. Zhao, Q. Wang, Boosting photocatalytic degradation of levofloxacin over plasmonic TiO2-x/TiN heterostructure, Appl. Surf. Sci. 655 (2024) 159516.