跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡右桐
研究生(外文):Yu-Tone Chien
論文名稱:水熱-化學電池法搭配還原氣氛退火合成SrTiO3/TiO2/TiN異質結構薄膜之高光電化學反應研究
論文名稱(外文):High Photoelectrochemical Response of SrTiO3/TiO2/TiN Heterostructure Films Synthesized by a Hydrothermal-Galvanic Couple Method with Post-Annealing Under a Reducing Atmosphere
指導教授:呂福興
指導教授(外文):Fu-Hsing Lu
口試委員:蔡健益曾文甲陳錦毅
口試日期:2024-06-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:91
中文關鍵詞:水熱-化學電池法退火異質結構缺陷鈦酸鍶二氧化鈦氮化鈦光電化學還原氣氛
外文關鍵詞:Hydrothermal-galvanic couple synthesisAnnealingHeterostructureDefectsStrontium titanateTitanium dioxideTitanium nitridePhotoelectrochemistyReducing atmosphere
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
異質結構作為增強光電化學反應的方法已被廣泛研究,文獻中製備SrTiO3/TiO2的方法多為水熱法與陽極氧化法,尚未有以水熱-化學電池法搭配還原氣氛退火製程。在本研究中,使用直流非平衡磁控濺鍍製備的導電TiN薄膜作為工作電極,於氫氧化鈉和醋酸鍶電解液中通過簡便的水熱-化學電池法製備SrTiO3/TiN薄膜,在80°C下反應30分鐘,過程中未施加外部電壓或電流,隨後,將薄膜在不同氧分壓的控制氣氛(air、N2、N2/5%H2)中進行退火,以氧化TiN的方式生成SrTiO3/TiO2異質結構薄膜。
根據XRD和FE-SEM結果顯示,立方相SrTiO3以顆粒狀生長於TiN薄膜上,在經過氧分壓較高的air與N2氣氛後退火後,TiN完全氧化為TiO2,因此光電流密度極低,而在經過N2/5%H2的還原氣氛中退火超過700°C後,TiN未完全氧化為TiO2,形成了SrTiO3/TiO2/TiN異質結構薄膜,這些薄膜的峰值光電流密度可以達到7000 μA/cm2以上,顯著高於在高氧分壓下退火和退火前的薄膜,這主要是由於在高溫和低氧分壓下TiN緩慢氧化生成的大晶粒TiO2,除此之外,在這種退火條件下生成的氧空位也可能起到重要作用。由電化學阻抗量測與霍爾分析顯示異質結構薄膜中的載子分離效率得到提高,而光致發光光譜則表明可能存在缺陷,進一步以EPR與XPS分析中證實氧空位的存在,結果明確顯示,SrTiO3/TiO2/TiN異質結構薄膜對光電化學反應的增強有顯著貢獻。機制也得到了闡明。統整實驗結果得知本研究成功製備出SrTiO3/TiO2/TiN 異質結構薄膜,在 N2/5%H2 氣氛900℃退火 3 小時,可得本研究最高的光電流密度7185±438 µA/cm2,而高光電化學電流的原因需要SrTiO3/TiO2異質結構、還原氣氛退火引入氧空位與導電TiN底層的幫助,三種條件缺一不可,並可由此預測高光電化學反應薄膜之製程區間。
關鍵詞: 水熱-化學電池法、退火、異質結構、缺陷、鈦酸鍶、二氧化鈦、氮化鈦、光電化學、還原氣氛
Heterostructures as a method to enhance photoelectrochemical reactions have been widely studied. In the literature, the preparation methods for SrTiO3/TiO2 are mostly hydrothermal and anodization methods. However, there has not yet been a method combining hydrothermal-galvanic couple synthesis and reduction atmosphere annealing. In this study, a conductive TiN film prepared by unbalanced DC magnetron sputtering was used as the working electrode. SrTiO3/TiN films were prepared using a simple hydrothermal-galvanic couple synthesis in a sodium hydroxide and strontium acetate electrolyte at 80°C for 30 minutes without applying any external voltage or current. Subsequently, the films were annealed in controlled atmospheres with different oxygen partial pressures (air, N2, N2/5%H2) to form SrTiO3/TiO2 heterostructure films by oxidizing TiN.
According to XRD and FE-SEM results, cubic phase SrTiO3 grows as particles on the TiN film. After annealing in atmospheres with higher oxygen partial pressures (air and N2), TiN is completely oxidized to TiO2, resulting in very low photocurrent density. However, after annealing in a reducing atmosphere of N2/5%H2 at temperatures above 700°C, TiN is not completely oxidized to TiO2, forming SrTiO3/TiO2/TiN heterostructure films. The peak photocurrent density of these films can reach over 7000 μA/cm², significantly higher than that of films annealed in high oxygen partial pressure or before annealing. This is mainly due to the large-grain TiO2 formed by the slow oxidation of TiN at high temperature and low oxygen partial pressure. Additionally, oxygen vacancies generated under such annealing conditions may also play an important role. Electrochemical impedance measurements and Hall analysis show improved carrier separation efficiency in the heterostructure films, while photoluminescence spectra indicate possible defects, further confirmed by EPR and XPS analyses to reveal the presence of oxygen vacancies. The results clearly demonstrate that the SrTiO3/TiO2/TiN heterostructure films significantly enhance photoelectrochemical reactions, and the mechanism has been elucidated.In summary, this study successfully prepared SrTiO3/TiO2/TiN heterostructure films. Annealing in N2/5%H2 atmosphere at 900°C for 3 hours resulted in the highest photocurrent density of 7185±438 µA/cm2 in this study. The high photoelectrochemical current is attributed to the SrTiO3/TiO2 heterostructure, the introduction of oxygen vacancies through reduction atmosphere annealing, and the conductive TiN substrate. All three conditions are indispensable, and this allows predicting the process range for high photoelectrochemical reaction films.
Keywords: Hydrothermal-galvanic couple synthesis, Annealing, Heterostructure, Defects, Strontium titanate, Titanium dioxide, Titanium nitride, Photoelectrochemisty, Reducing atmosphere
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 2
1.4支持本研究國科會計畫 2
第二章 理論背景與文獻回顧 3
2.1 理論背景 3
2.1.1 水熱、化學電池與水熱-化學電池法 3
2.1.2 光電化學反應 4
2.1.3 異質結構 6
2.1.4 氧空位缺陷 8
2.1.5 光電流密度與電化學阻抗 9
2.2 文獻回顧 11
2.2.1 本實驗室以水熱-化學電池法製備鈣鈦礦薄膜 11
2.2.2 鈦酸鍶/二氧化鈦異質結構應用於光電化學反應文獻 18
2.2.3 於材料內引入氧空位應用於光電化學反應文獻 20
第三章 研究方法 22
3.1 實驗流程與參數 22
3.1.1 氮化鈦薄膜製程 23
3.1.2 水熱-化學電池法製備鈦酸鍶薄膜 24
3.1.3 不同氣氛下退火鈦酸鍶薄膜 25
3.2 特徵分析 25
3.2.1 四點探針儀 25
3.2.2 X光繞射儀 25
3.2.3 場發射掃描式電子顯微鏡 25
3.2.4 場發射穿透式電子顯微鏡 26
3.2.5 電子能量損失能譜儀 26
3.2.6 X光光電子能譜儀 26
3.2.7 電子順磁共振儀 26
3.2.8 螢光光譜系統 26
3.2.9 電化學分析儀 27
3.2.10 紫外光/可見光/近紅外光光譜儀 27
3.2.11 霍爾效應分析儀 27
第四章 結果 28
4.1 導電TiN薄膜電極分析 28
4.2 以水熱-化學電池法製備鈦酸鍶薄膜 29
4.2.1 電流-時間曲線與薄膜外觀 29
4.2.2 結晶相與顯微結構分析 30
4.2.3 能隙分析 32
4.2.4 光電流密度 33
4.2.5 成分分析 33
4.3 不同氣氛退火鈦酸鍶薄膜以製備鈦酸鍶/二氧化鈦異質結構 36
4.3.1 不同氣氛之氧分壓 36
4.3.2 薄膜外觀 37
4.3.3 結晶相與微結構分析 37
4.3.4 光電流密度 43
4.3.5 電化學分析 48
4.3.6 載子濃度與遷移率 51
第五章 討論 54
5.1 高光電化學電流表現 54
5.1.1 與實驗室過去結果之比較 54
5.1.2 高光電化學電流的製程條件 58
5.2 高光電化學電流提高的原因 63
5.2.1 SrTiO3/TiO2/TiN 異質結構 63
5.2.2 氧空位的引入 66
5.2.3 氮化鈦導電層的幫助 72
5.3 高光電化學電流之機制 76
第六章 結論 78
參考文獻 80
[1] J.E. Thorne, Y. He, D. Wang, Nanostructured Materials, in: S. Giménez, J. Bisquert, Photoelectrochemical Solar Fuel Production From Basic Principles to Advanced Devices, Springer, Cham, 2016, pp. 463-492.
[2] R. van de Krol, M. Grätzel, Photoelectrochemical Hydrogen Production, Springer, New York, 2012, pp. 13, 55-56.
[3] Y.-Y Pai, T.-T. A, P. Irvin, J.Levy, Physics of SrTiO3-based heterostructures and nanostructures: a review, Rep. Prog. Phys. 81 (2018) 036503.
[4] M. N. Gastiasoro, J. Ruhman, R. M. Fernandes, Superconductivity in dilute SrTiO3: a review, Ann. Phys. 417 (2020) 168107.
[5] S. Patial, V. Hasija, P. Raizada, P. Singh , A. A. P. K . Singh, A. M. Asiri, Tunable photocatalytic activity of SrTiO3 for water splitting: strategies and future scenario, J. Environ. Chem. Eng. 8 (2020) 103791.
[6] Y. Wang, J. Zhang, M.S. Balogun, Y. Tong, Y. Huang, Oxygen vacancy-based metal oxides photoanodes in photoelectrochemical water splitting, Mater. Today Sustain. 18 (2022) 100118.
[7] J. Li, X.-G. Tang, Q.-X. Liu, Y.-P. Jiang, W.-H. Li, Enhancement of the photoelectric properties of composite oxide TiO2 SrTiO3 thin films, Adv. Compos. Hybrid Mater. (2021) 27.
[8] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
[9] C. Hou, J. Wang, W. Zhang, J. Li, R. Zhang, J. Zhou, Y. Fan, D. Li, F. Dang, J. Liu, Y. Li, K. Liang, B. Kong, Interfacial superassembly of grape-Like MnO−Ni@C frameworks for superior lithium storage, ACS Appl. Mater. Interfaces 12 (2020) 13770-13780.
[10] X. Zhang, K. Huo, L. Hu, Z. Wu, P. K. Chu, Synthesis and photocatalytic activity of highly ordered TiO2 and SrTiO3/TiO2 nanotube arrays on Ti substrates, J. Am. Ceram. Soc. 93 (2010) 2771-2778.
[11] H. O. Pierson, Handbook of refractory carbides and nitrides properties, Characteristics, processing and applications, Noyes Publications, New Jersey (1996) 193.
[12] S. Feng, G. Li, Hydrothermal and Solvothermal Syntheses, in: R. Xu, W. Pang, Q. Huo, Modern Inorganic Synthetic Chemistry, 2011, pp. 63-95.
[13] C. Zoski, Handbook of Electrochemistry, Elsevier, 2006, pp.3-7.
[14] M. Grätzel, Photoelectrochemical cells, Nature 414 (2001) 338-344.
[15] E. Bequerel, Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen descourants électriques. C.R. Acad. Sci. 9 (1839) 145–149.
[16] A.Mills, S. L. Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem. 108 (1997) 1081-35.
[17] K.-H. Ye, H. Li, D. Huang, S. Xiao, W. Qiu, M.Li, Y. Hu, W. Mai, H. Ji, S. Yang, Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering, Nat. Commun. 10 (2019) 1-9.
[18] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
[19] I. R. Hamdani, A. N. Bhaskarwar, Recent progress in material selection and device designs for photoelectrochemical water-splitting, Renewable Sustainable Energy. Rev. 138 (2021) 110503.
[20] S. T. Kochuveedu, Photocatalytic and photoelectrochemical water splitting on TiO2 via photosensitization, J. Nanomater. (2016) 1-12.
[21] T. J. Jacobsson, Photoelectrochemical water splitting: an idea heading towards obsolescence?, Energy Environ. Sci. 11 (2018) 1977-1979.
[22] R. Richard, J. Law (Eds.), A Dictionary of Physics, 8th ed, Oxford University Press, United Kingdom, 2019.
[23] R. C. Pawar, C. S. Lee, Heterogeneous Nanocomposite Photocatalysis for Water Purification, 1st Edition., Elsevier, USA, 2015, pp. 1-23.
[24] J.-G. Yu, X. Li, J.-X. Low, Semiconductor solar photocatalysts: fundamentals and applications, 1st ed. Wiley-VCH, 2022.
[25] G. Wang, Y. Yang, D. Han, Y. Li, Oxygen defective metal oxides for energy conversion and storage, Nano Today 13 (2017) 23-39.
[26] A. Sinhamahapatra , J.-P. Jeon, J. Kang, B. Han, J. S. Yu, Oxygendeficient zirconia (ZrO2-x): a new material for solar light absorption, Sci. Rep. 6 (2016) 27218.
[27] S. Wang, P. Chen, Y. Bai, J. H. Yun, G. Liu, L. Wang, New BiVO4 dual Photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting, Adv. Mater. 30 (2018) 1800486.
[28] B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation, Angew Chem Int Ed. 57 (2018) 2248-2252.
[29] J. Nowotny, T. Bak, M. A. Alim, Defect disorder of TiO2. Equilibrium constant for the formation of oxygen vacancies, ECS Solid State Lett. 3 (2014) Q71-Q75.
[30] Z. Wang, X. Mao, P. Chen, Understanding the roles of oxygen vacancies in hematite-based Photoelectrochemical processes, Angew. Chem. Int. Ed. 58 (2019) 1030-1034.
[31] M. Anpo, S. Dzwigaj, M. Che, Applications of Photoluminescence Spectroscopy to the Investigation of OxideContaining Catalysts in the Working State, in: B. C. Gates, H. Knözinger, Advances in Catalysis, Volume 52, 2009, pp. 1-42.
[32] R.-A. Eichel, Structural and dynamic properties of oxygen vacancies in perovskite oxides-analysis of defect chemistry by modern multi-frequency and pulsed EPR techniques, Phys. Chem. Chem. Phys. 13 (2011) 368-384.
[33] Z. Wang, L. Wang, Role of oxygen vacancy in metal oxide based photoelectrochemical water splitting, EcoMat. 3 (2021) e12075.
[34] E. P. Randviir, C. E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Anal. Methods, 5 (2013) 1098-1115.
[35] C. M. A. Brett, Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors, Molecules 27 (2022) 1497.
[36] J.-M. Zen, G. Ilangovan, J.-J. Jou, Square-Wave voltammetric determination and ac impedance study of dopamine on preanodized perfluorosulfonated ionomer-coated glassy carbon electrodes, Anal. Chem. 71 (1999) 2797-2805.
[37] K.Wysmulek, J. Sar, P. Osewski, K. Orlinski, K. Kolodziejak, A. T. Zajac, M. Radecka, D. A. Pawlak, A SrTiO3-TiO2 eutectic composite as a stable photoanode material for photoelectrochemical hydrogen production, Appl. Catal. B: Environ. 206 (2017) 538-546.
[38] 余錦智,以低溫水熱法及化學電池作用於TiN膜上製備鈦酸鋇膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2005)。
[39] Y.-C. Chieh, C.-C. Yu, F.-H. Lu, Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method, Appl. Phys. Lett. 90 (2007) 032904-032906.
[40] 鄧煥平,以低溫水熱-化學電池法於鍍氮化鋯膜矽基材上製備鋯酸鋇膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2007)。
[41] 趙玲夙,以低溫水熱-化學電池法於鍍鈦膜矽基材上製備具有生物活性之奈米NaHTi3O7薄膜研究,國立中興大學材料科學與工程學系碩士學位論文(2009)。
[42] P.-H. Chan, F.-H. Lu, Low-temperature hydrothermal–galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrates, Thin Solid Films 517 (2009) 4782–4785.
[43] 蔡迪佑,以水熱-化學電池法於TiN膜上製備鈦酸鋇膜及其成長動力學分析,國立中興大學材料科學與工程學系碩士學位論文(2010)。
[44] 林佳君,以水熱-化學電池法於不同表面形貌及電阻率之 TiN/Si 上製備SrTiO3膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2011)。
[45] 簡榛密,以水熱-化學電池法在鍍氮化鈦膜基材上製備鈦酸鋇膜與應用於天線之研究,國立中興大學材料科學與工程學系碩士學位論文(2012)。
[46] 蔡右相,水熱-化學電池法中以低Sr離子濃度生成SrTiO3薄膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2013)。
[47] C.-J. Yang, D.-Y. Tsai, P.-H. Chan, C.-T. Wu, F.-H. Lu, Hydrothermal- galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrate, Thin Sold Films 542 (2013) 108-113.
[48] 陳祺涵,以低Ba離子濃度在水熱-化學電池法生成BaTiO3薄膜之探討,國立中興大學材料科學與工程學系碩士學位論文(2014)。
[49] Y.-H. Tsai, Y.-C. Chieh, F.-H. Lu, Influence of Sr+2 concentrations on growth of SrTiO3 thin films synthesized by hydrothermal–galvanic couple method, Thin Solid Films 570 (2014) 479–485.
[50] 吳効泓,以水熱-化學電池法於ZrN/Si上製備BaZrO3薄膜及成長機制分析,國立中興大學材料科學與工程學系碩士學位論文(2015)。
[51] 詹薰述,以水熱-化學電池法於TiN/Si基材上製備BaxSr1-xTiO3薄膜之特性研究,國立中興大學材料科學與工程學系碩士學位論文(2015)。
[52] 詹佩諠,低溫水熱化學電池法於氮化鈦膜上製備 鈦酸鍶鋇薄膜之研究,國立中興大學材料科學與工程學系博士學位論文(2015)。
[53] 黃亭瑞,以水熱-化學電池法於ZrN/Si雙電極製備BaZrO3薄膜並應用於光電流之研究,國立中興大學材料科學與工程學系碩士學位論文(2019)。
[54] H.-P. Teng, C.-C. Lin, F.-H. Lu, A facile growth control of perovskite SrTiO3 thin films by tailoring surface morphologies of TiN seeding layers in the hydrothermal-galvanic couple synthesis, Thin Solid Films 570 (2014) 479-485.
[55] 黃詩棋,以水熱‐化學電池法在雙TiN薄膜電極系統製備鈦酸鋇薄膜及其應用研究,國立中興大學材料科學與工程學系碩士學位論文(2020)。
[56] 鄭羽蓁,以水熱-化學電池法於氮化物薄膜電極上製備鋁與氮摻雜鈦酸鋇薄膜及特性分析,國立中興大學材料科學與工程學系碩士學位論文(2021)。
[57] 周沛澐,水熱-化學電池法製備氮摻雜鈦酸鍶薄膜之特性分析並輔以第一原理計算,國立中興大學材料科學與工程學系碩士學位論文(2022)。
[58] 張銘芳,水熱-化學電池法製備高光電化學反應之BaTiO3/TiO2異質結構薄膜並輔以第一原理計算,國立中興大學材料科學與工程學系碩士學位論文(2022)。
[59] J. Zhang, J. H. Bang, C. Tang, P. V. Kamat, Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance, ACS Nano 4 (2010) 387-395.
[60] X. Yue, J. Zhang, F. Yan, X. Wang, F. Huang, A situ hydrothermal synthesis of SrTiO3/TiO2 heterostructure nanosheets with exposed (0 0 1) facets for enhancing photocatalytic degradation activity, Appl. Surf. Sci. 319 (2014) 68-74.
[61] Y.-F. Zhu, L. Xu, J. Hu, J. Zhang, R.-G. Du, C.-J. Lin, Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel, Electrochim. Acta (2014) 361-368.
[62] J. Zhou, L. Yin, K. Zha, H. Li, Z. Liu, J. Wang, K. Duan, B. Feng, Hierarchical fabrication of heterojunctioned SrTiO3/TiO2 nanotubes on 3D microporous Ti substrate with enhanced photocatalytic activity and adhesive strength, Appl. Surf. Sci. (2016) 118-125.
[63] K. Wysmulek, J. Sar, P. Osewski, K. Orlinski, K. Kolodziejak, M. Radecka, D. A. Pawlak, A SrTiO3-TiO2 eutectic composite as a stable photoanode material for photoelectrochemical hydrogen production, Appl. Catal. B 206 (2017) 538-546.
[64] O. khemakhem, J. Bennaceur, W. C.-Koubaa, M. Koubaa, R. Chtourou, A. Cheikhrouhou, Enhanced photoelectrochemical photocatalytic activities in hydrothermal synthesized SrTiO3/TiO2 heterostructure thin films, J. Alloys Compd. 696 (2017) 682-687.
[65] N. Khare, G. Razzini, L. P. Bicelli, Photoelectrochemical, electrolyte electroreflectance and topological characterization of electrodeposited CuInSe2 films, Solar Cells 31 (1991) 283-295.
[66] Q.-Y. Chen, H.-X. Tong, Z.-L. Yin, H.-P. Hu, J. Li, L.-L. Liu, Preparation, Characterization and Photocatalytic Behavior of TiO2 Catalysts with Oxygen Vacancies, Acta Phys. Chim. Sin. 23(12) (2007) 1917-1921.
[67] M. E. Zvanut, S. Jeddy, E. Towett, G. M. Janowski, C. Brooks, D. Schlom, An annealing study of an oxygen vacancy related defect in SrTiO3 substrates, J. Appl. Phys. 104 (2008) 064122.
[68] C. Fabrega, T. Andreu, F. Guell, J. D. Prades, S. Estrad, J. M. Rebled, F. Peiro, J. R. Morante, Effectiveness of nitrogen incorporation to enhance the photoelectrochemical activity of nanostructured TiO2:NH3 versus H2-N2 annealing, Nanotechnology 22 (2011) 235403.
[69] H. Trabelsi, M. Bejar, E. Dhahri, M. P. F. Graca, M. A. Valente, M. J. Soares, N. A. Sobolev, Raman, EPR and ethanol sensing properties of oxygen-Vacancies SrTiO3-σ compounds, Appl. Surf. Sci. 426 (2017) 386-390.
[70] L. Xu, X. Ma, N. Sun, F. Chen, Bulk oxygen vacancies enriched TiO2 and its enhanced visible photocatalytic performance, Appl. Surf. Sci. 441 (2018) 150-155.
[71] B.D. Cullity, S.R. Stock, Elements of x-ray diffraction, 3th ed., Prentice Hall, New York, 2001, pp. 367-388.
[72] S. Yurdakal, C. Garlisi, L. Ö zcan, M. Bellardita, G. Palmisano, (Photo)catalyst Characterization Techniques: Adsorption Isotherms and BET, SEM, FTIR, UV– Vis, Photoluminescence, and Electrochemical Characterizations, in Heterogeneous Photocatalysis, Elsevier, Italy, 2019, pp.87-152.
[73] Y. Yamada, Y. Kanemitsu, Band-to-band photoluminescence in SrTiO3, Phys. Rev. B 82 (2010) 121103.
[74] C. Zhang, Y. Jia, Y. Jing, Y. Yao, J. Ma, J. Sun, Effect of non-metal elements (B, C, N, F, P, S) mono-doping as anions on electronic structure of SrTiO3, Comput. Mater. Sci. 79 (2013) 69-74.
[75] L. Gu, H. Wei, Z. Peng, H. Wu, Defects enhanced photocatalytic performances in SrTiO3 using laser-melting treatment, J. Mater. Res. 32 (2017) 748-756.
[76] G. Niu, P. Zaumseil, M.A. Schubert, M.H. Zoellner, J. Dabrowski, T. Schroede, Lattice-matched epitaxial ternary PrxY2−xO3 films on SrO-passivated Si (001): Interface engineering and crystallography tailoring, Appl. Phys. Lett. 102 (2013) 011906.
[77] S. Fuentes, E. Chávez, L. Padilla-Campos, D.E. Diaz-Droguett, Influence of reactant type on the Sr incorporation grade and structural characteristics of 121 Ba1−xSrxTiO3 (x=0−1) grown by sol–gel-hydrothermal synthesis, Ceram. Int. 39 (2013) 8823–8831.
[78] X. Huang, X. Gao, Q. Xue, C. Wang, R. Zhang, Y. Gao, Z. Han, Impact of oxygen vacancies on TiO2 charge carrier transfer for photoelectrochemical water splittin, Dalton Trans. 49 (2020) 2184–2189.
[79] X. Bi, G. Du, A. Kalam, D. Sun, Y. Yu, Q. Su, B. Xu, A. G. Al-Sehemi, Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance, Chem. Eng. Sci. 234 (2021) 116440.
[80] X. Liang, Q. He, J. Zhang, X. Ding, Y. Gao, W. Chen, K. H.L. Zhang, C. Y. Haw, Enhanced photo-carrier transportation at semiconductor/electrolyte interface of TiO2 photoanode by oxygen vacancy engineering, Appl. Surf. Sci. 597 (2022) 153744.
[81] D. Shindo, T. Oikawa, Energy Dispersive X-ray Spectroscopy. In: Analytical Electron Microscopy for Materials Science. Springer, Tokyo, 2002.
[82] M. Radecka, E. Pamula, A. Trenczek-Zajac, K. Zakrzewska, A. Brudnik, E. Kusior, N.T.H. Kim-Ngan, A.G. Balogh, Chemical composition, crystallographic structure and impedance spectroscopy of titanium oxynitride TiNxOy thin films, Solid State Ioni, 192 (2011) 693-698.
[83] O. khemakhem, J. Bennaceur, W. C.-Koubaa, M. Koubaa, R. Chtourou, A. Cheikhrouhou, Enhanced photoelectrochemical photocatalytic activities in hydrothermal synthesized SrTiO3/TiO2 heterostructure thin films, J. Alloys Compd. 696 (2017) 682-687.
[84] J. Zhou, L. Yin, K. Zha, H.-R. Li, Z.-Y. Liu, J.-X. Wang, K. Duan, B. Feng, Hierarchical fabrication of heterojunctioned SrTiO3/TiO2 nanotubes on 3D microporous Ti substrate with enhanced photocatalytic activity and adhesive strength, Appl. Surf. Sci. 367 (2016) 118-125.
[85] H.-X. Lin, L.-Y. Ding, Z.-X. Pei, Y.-G. Zhou, J.-L. Long, W.-H. Deng, X.-X. Wang, Au deposited BiOCl with different facets: On determination of the facet-induced transfer preference of charge carriers and the different plasmonic activity, Appl. Catal. B. 160-161 (2014) 98-105.
[86] L.M. Peter, A.B. Walker, T. Bein, A.G. Hufnagel, I. Kondofersky, Interpretation of photocurrent transients at semiconductor electrodes: Effects of band-edge unpinning, J. Electroanal. Chem. 872 (2020) 114234.
[87] E. P. Randviir, C. E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Anal. Methods 5 (2013) 1098–1115.
[88] A. Hankin, F. E. B.-Lora, J. C. Alexander, A. Regoutz, G. H. Kelsall, Flat band potential determination: avoiding the pitfalls, J. Mater. Chem. A. 7 (2019) 26162.
[89] D. Liu, Z. Yan, P. Zeng, H. Liu, T. Peng, R. Li, In situ grown TiN/N-TiO2 composite for enhanced photocatalytic H2 evolution activity, Front. Energy 15 (2021) 721-731.
[90] F. Wei, Y. Liu, H. Zhao, X. Ren, J. Liu, T. Hasan, L. Chen, Yu Li, B.-L. Su, Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance, Nanoscale 10 (2018) 4515.
[91] 張廷嘉,以水熱-化學電池法於氮氧化鈦薄膜電極製備鈦酸鋇薄膜,國立中興大學材料科學與工程學系碩士學位論文(2020)。
[92] 李至宜,以水熱-化學電池法在TiN薄膜電極上製備不同優選方向之鈦酸鋇薄膜及應用研究,國立中興大學材料科學與工程學系碩士學位論文(2021)。
[93] 張峻誠,以電漿電解氧化法於TiN電極製備氮摻雜之鈦酸鋇薄膜,國立中興大學材料科學與工程學系碩士學位論文(2022)。
[94] H. Tan, Z. Zhao, W. Zhu, E. N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, Z. Sun, Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3, ACS Appl. Mater. Interfaces 6 (2014) 19184–19190.
[95] D. Hertkorn, M. Benkler, U. Gleißner, F. Büker, C. Megnin, C. Müller, T. Hanemann, H. Reinecke, Morphology and oxygen vacancy investigation of strontium titanatebased photo electrochemical cells, J. Mater. Sci. 50 (2015) 40-48.
[96] C.A. Randall, P. Yousefian, Fundamentals and practical dielectric implications of stoichiometry and chemical design in a high-performance ferroelectric oxide: BaTiO3, J. Eur. Ceram. Soc. 42 (2022) 1445-1473.
[97] T. Bak, J. Nowotny, M. K. Nowotny, Defect disorder of titanium dioxide, J. Phys. Chem. B 110 (2006) 21560–21567.
[98] M. Siebenhofer, F. Baiutti, J. D. Sirvent, T. M. Huber, A. Viernstein, S. Smetaczek, C. Herzig, M. O. Liedke, M. Butterling, A. Wagner, E. Hirschmann, A. Limbeck, A. Tarancon, J. Fleig, M. Kubicek, Exploring point defects and trap states in undoped SrTiO3 single crystals, J. Eur. Ceram. Soc. 42 (2022) 1510–1521.
[99] B. Santara1, P. K.Giri, S. Dhara, K. Imakita, M. Fujii, Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons, J. Phys. D: Appl. Phys. 47 (2014) 235304.
[100] J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li, Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture, J. Phys. Chem. C 111 (2007) 693-699.
[101] J.-H. Yan, Y.-R. Zhu, Y.-G. Tang, S.-Q. Zheng, Nitrogen-doped SrTiO3/TiO2 composite photocatalysts for hydrogen production under visible light irradiation, J. Alloys Compd. 472 (2009) 429–433.
[102] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B 107 (2003) 5483-5486.
[103] X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications, Nanoscale (2013) 5 3601.
[104] M. Du, Q. Chen, Y. Wang, J. Hu, X. Meng, Synchronous construction of oxygen vacancies and phase junction in TiO2 hierarchical structure for enhancement of visible light photocatalytic activity, J. Alloys Compd. 830 (2020) 154649.
[105] M. M. Khan, S. A. Ansari, D. Pradhan, M. O. Ansari, D. H. Han, J. Lee, M. H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. 2 (2014) 637-644.
[106] Y. Ye, B. Liao, M. Li, M. Mai, L. Zhang, L. Ma, D. Lin, J. Zhao, D. Chen, X. Ma, Boosting photoelectrochemical chlorine and hydrogen production with oxygen vacancy rich TiO2 photoanodes, J. Alloys Compd. 947 (2023) 169480.
[107] C. Fan, C. Chen, J. Wang, X. Fu, Z. Ren, G. Qian, Z. Wang, Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity, Sci. Rep. 5 (2015) 11712.
[108] X. Hou, M. Shang, Y. Bi, Z. Jiao, Synthesis of Ti3+ self-doped SrTiO3/TiO2 hetero-photoanodes with enhanced photoelectrochemical performances under visible light, Mater. Lett. 176 (2016) 270-273.
[109] L. Fanga, J. Chenb, M. Zhanga, X. Jiangd, Z. Sun, Introduction of Ti3+ ions into heterostructured TiO2 nanotree arrays for enhanced photoelectrochemical performance, Appl. Surf. Sci. 490 (2019) 1-6.
[110] C. Wua, Z. Gao, S. Gao, Q. Wang, H. Xu, Z.Wang,B. Huang, Y. Dai, Ti3+ self-doped TiO2 photoelectrodes for photoelectrochemical water splitting and photoelectrocatalytic pollutant degradation, J. Energy Chem. 25 (2016) 726-733.
[111] T. Łęckia, K. Zarębska, K. Sobczak, M. Skompska, Photocatalytic degradation of 4-chlorophenol with the use of FTO/TiO2/SrTiO3 composite prepared by microwave-assisted hydrothermal method, Appl. Surf. Sci. 470 (2019) 991-1002.
[112] Y. Lia, J.-G Wanga, Y. Fanb, H. Suna, W. Huaa, H. Liua, B. Wei, Plasmonic TiN boosting nitrogen-doped TiO2 for ultrahigh efficient photoelectrochemical oxygen evolution, Appl. Catal. B: Environ. 246 (2019) 21-29.
[113] Y. Liu, M. Peng, K. Gao, R. Fu, S. Zhang, Y. Xiao, J. Guo, Z. Wang, H. Wang, Y. Zhao, Q. Wang, Boosting photocatalytic degradation of levofloxacin over plasmonic TiO2-x/TiN heterostructure, Appl. Surf. Sci. 655 (2024) 159516.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊