跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許瑋倫
研究生(外文):Wei-Lun Hsu
論文名稱:聚苯胺/碳材/二氧化鈰奈米纖維複合材料之特性分析及氨氣感測研究
論文名稱(外文):Characteristics Analysis and Gas Sensing Study of Polyaniline/Carbon material/Cerium Dioxide Nanofiber Nanocomposites
指導教授:吳宗明吳宗明引用關係
指導教授(外文):Tzong-Ming Wu
口試委員:廖建勛蔡毓楨
口試委員(外文):Chien-Shiun LiaoYu-Chen Tsai
口試日期:2024-06-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:116
中文關鍵詞:靜電紡絲二氧化鈰聚苯胺室溫氨氣感測摻氮石墨烯量子點
外文關鍵詞:electrospinningcerium dioxidepolyanilineroom temperature ammonia gas sensorN-doped graphene quantum dots
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機/無機複合材料在室溫下對氨氣的傳感性能備受關注,本研究使用硝酸鈰前驅溶液與靜電紡絲(Electrospinning)技術製備奈米纖維,透過高溫鍛燒形成二氧化鈰(CeO2)中空奈米纖維結構,經X光繞射儀(X-ray diffractometer, XRD)、掃描式電子顯微鏡(Field-emission scanning electron microscope, FE-SEM)、穿透式電子顯微鏡(Transmission electron microscope, TEM)等分析確認CeO2晶體以及中空纖維形貌形成。
接著以原位聚合法合成聚苯胺(Polyaniline, PANI)並添加不同比例之二氧化鈰中空纖維形成聚苯胺/二氧化鈰(PANI/CeO2)複合材料,同樣進行XRD、SEM、TEM等材料分析觀察表面形貌以及化學結構及晶體結構,並探討CeO2中空纖維添加量對聚苯胺披覆形貌以及室溫下氨氣檢測之影響,結果顯示添加20 wt%之CeO2纖維時形成最均勻之披覆,在1 ppm氨氣濃度下有最高之氣體響應值20.82。
接著利用高壓水熱法製備摻氮石墨烯量子點,並與CeO2中空纖維以靜電吸引的方式產生吸附,藉由兩者界面電位、TEM進一步證實,最後將聚苯胺進行披覆以形成聚苯胺/摻氮石墨烯量子點-二氧化鈰(PANI/NGQD-CeO2)三元複合材料,觀察到碳材加入後響應值提升至24.68,並對其進行氨氣之重複性、選擇性、長期穩定性之氣敏性能檢測。
The sensing performance of organic/inorganic composite materials for ammonia gas sensors at room temperature has garnered significant attention. In this study, a cerium nitrate precursor solution was utilized along with electrospinning technology to fabricate the nanofibers. These nanofibers were then subjected to high-temperature calcination to yield a hollow cerium dioxide (CeO2) nanofiber with crystalline structure. Analysis conducted via X-ray diffractometer (XRD), Field-emission scanning electron microscope (FE-SEM), and Transmission electron microscope (TEM) confirmed the formation of CeO2 crystals with hollow morphology.
Following that, aniline monomer and different ratios of cerium dioxide hollow fibers were mixed and synthesized using an in-situ polymerization method to form polyaniline/cerium dioxide (PANI/CeO2) composite materials. Similarly, XRD, SEM, and TEM were employed to observe surface morphology, chemical structure, and crystal structure. Furthermore, the effect of the additional CeO2 on the morphology of polyaniline of composite materials and the detection of ammonia gas at room temperature was investigated. The results indicate that the addition of 20 wt% CeO2 forms the most uniform coating thickness with the highest gas response value of 20.82 at a 1 ppm ammonia gas concentration.
Next, N-doped graphene quantum dots (NGQD) prepared using a hydrothermal method were adsorbed onto the CeO2 hollow fibers through electrostatic attraction. This process was further confirmed by Zeta potential analysis and TEM. Finally, polyaniline was coated to form a PANI/NGQD-CeO2 ternary composite material. It was observed that the addition of carbon material increased the response value to 24.68. The sensing performances in terms of repeatability, selectivity, and long-term stability of ammonia gas were also evaluated.
摘要 i
Abstract ii
目錄 iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 研究目的與方向 4
第二章 文獻回顧與基本理論 6
2.1 基本能帶理論 6
2.1.1 p型與n型半導體 8
2.1.2 p-n接面(p-n junction) 9
2.2 氣體感測器 10
2.2.1 導電高分子(Conductive polymer) 12
2.2.2 金屬氧化物(Metal oxide, MOx) 14
2.2.3 氣體感測機制 16
2.3 靜電紡絲 17
2.4 聚苯胺(Polyaniline, PANI) 20
2.4.1 聚苯胺之製備 23
2.5 二氧化鈰(Cerium oxide, CeO2) 25
2.5.1 二氧化鈰之製備 27
2.6 摻氮石墨烯量子點(N-doped graphene quantum dots, NGQD) 32
2.6.1 摻氮石墨烯量子點之製備 35
2.7 氨氣感測之研究 38
2.7.1 聚苯胺/碳材複合材料 38
2.7.2 聚苯胺/金屬氧化物複合材料 40
2.7.3 導電高分子/碳材/金屬氧化物複合材料 43
第三章 實驗方法與步驟 45
3.1 實驗材料 45
3.2 實驗儀器 47
3.3 實驗架構 49
3.4 實驗步驟 50
3.4.1 二氧化鈰中空奈米纖維之製備 50
3.4.2 聚苯胺/二氧化鈰複合材料之製備 53
3.4.3 摻氮石墨烯量子點之製備 55
3.4.4 聚苯胺/摻氮石墨烯量子點吸附二氧化鈰纖維之製備 56
3.4.5 氣體感測實驗 58
3.5 實驗儀器分析 60
3.5.1 X光繞射儀 (X-ray diffractometer, XRD) 60
3.5.2 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer, FTIR) 60
3.5.3 化學分析電子能譜儀(Electron spectroscope for chemical analysis, ESCA) 61
3.5.4 場發射掃描式電子顯微鏡(Field-emission scanning electron microscopy, FESEM) 61
3.5.5 紫外/可見光分光光譜儀 (Ultraviolet-visible spectrophotometer, UV-Vis) 62
3.5.6 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 62
3.5.7 界面電位分析儀 (Zeta potential analyzer) 63
3.5.8 拉曼光譜儀 (Raman spectrometer) 63
3.5.9 高效能氣體吸附比表面積及孔徑分析儀(Gas sorption analyzer) 63
3.5.10 原子力顯微鏡(Atomic force microscopy, AFM) 64
第四章 結果與討論 65
4.1 二氧化鈰奈米中空纖維之性質分析 65
4.2 聚苯胺/二氧化鈰複合材料 71
4.2.1 聚苯胺/二氧化鈰複合材料之材料性質分析 71
4.2.2 聚苯胺/二氧化鈰複合材料之氨氣感測 78
4.3 摻氮石墨烯量子點之基本性質分析 83
4.3.1 摻氮石墨烯量子點吸附二氧化鈰基本性質分析 87
4.4 摻氮石墨烯量子點吸附二氧化鈰/聚苯胺三元複合材料 91
4.4.1 摻氮石墨烯量子點吸附二氧化鈰/聚苯胺三元複合材料之基本性質分析 91
4.4.2 摻氮石墨烯量子點吸附二氧化鈰/聚苯胺三元複合材料之氨氣感測 95
4.5 與相關文獻之比較 105
第五章 結論 106
第六章 參考文獻 108
[1]"Kidney disease in Taiwan annual report," 2022.
[2]中華民國行政院衛生福利部統計處, "111 年死因統計結果分析," 2022.
[3]M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, and R. N. Cataneo, "Variation in volatile organic compounds in the breath of normal humans," Journal of Chromatography B: Biomedical Sciences and Applications, vol. 729, no. 1, pp. 75-88, 1999.
[4]赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, and 宋伟杰, "基于人体呼气检测应用的气体传感器," 化学进展, vol. 35, no. 2, p. 302, 2023.
[5]P. C. Moura, M. Raposo, and V. Vassilenko, "Database of volatile organic compounds biomarkers for the diagnosis of pathological conditions."
[6]T. Hibbard, K. Crowley, F. Kelly, F. Ward, J. Holian, A. Watson, and A. J. Killard, "Point of care monitoring of hemodialysis patients with a breath ammonia measurement device based on printed polyaniline nanoparticle sensors," Analytical Chemistry, vol. 85, no. 24, pp. 12158-12165, 2013.
[7]I. Bayrakli, A. Turkmen, H. Akman, M. T. Sezer, and S. Kutluhan, "Applications of external cavity diode laser-based technique to noninvasive clinical diagnosis using expired breath ammonia analysis: Chronic kidney disease, epilepsy," Journal of Biomedical Optics, vol. 21, no. 8, p. 87004, 2016.
[8]C. Turner, P. Španěl, and D. Smith, "A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS," Physiological Measurement, vol. 27, no. 4, p. 321, 2006.
[9]P. Le Maout, J. L. Wojkiewicz, N. Redon, C. Lahuec, F. Seguin, L. Dupont, S. Mikhaylov, Y. Noskov, N. Ogurtsov, and A. Pud, "Polyaniline nanocomposites based sensor array for breath ammonia analysis. Portable e-nose approach to non-invasive diagnosis of chronic kidney disease," Sensors and Actuators B: Chemical, vol. 274, pp. 616-626, 2018.
[10]P. C. Moura, M. Raposo, and V. Vassilenko, "Breath volatile organic compounds (VOCs) as biomarkers for the diagnosis of pathological conditions: A review," Biomedical Journal, vol. 46, no. 4, p. 100623, 2023.
[11]P. C. Moura and V. Vassilenko, "Contemporary ion mobility spectrometry applications and future trends towards environmental, health and food research: A review," International Journal of Mass Spectrometry, vol. 486, p. 117012, 2023.
[12]M. F. Gelin, A. P. Blokhin, E. Ostrozhenkova, A. Apolonski, and K. S. Maiti, "Theory helps experiment to reveal VOCs in human breath," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 258, p. 119785, 2021.
[13]J. Li, S. Yang, Z. Du, R. Wang, L. Yuan, H. Wang, and Z. Wu, "Quantitative analysis of ammonia adsorption in Ag/AgI-coated hollow waveguide by mid-infrared laser absorption spectroscopy," Optics and Lasers in Engineering, vol. 121, pp. 80-86, 2019.
[14]A. M. Ruiz, A. Cornet, and J. R. Morante, "Performances of La–TiO2 nanoparticles as gas sensing material," Sensors and Actuators B: Chemical, vol. 111-112, pp. 7-12, 2005.
[15]J. Shruthi, N. Jayababu, and M. V. R. Reddy, "Synthesis of Y2O3-ZnO nanocomposites for the enhancement of room temperature 2-methoxyethanol gas sensing performance," Journal of Alloys and Compounds, vol. 798, pp. 438-445, 2019.
[16]M. Lin, H. Chen, Z. Zhang, and X. Wang, "Engineering interface structures for heterojunction photocatalysts," Physical Chemistry Chemical Physics, vol. 25, no. 6, pp. 4388-4407, 2023.
[17]P. Makuła, M. Pacia, and W. Macyk, "How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra," The Journal of Physical Chemistry Letters, vol. 9, no. 23, pp. 6814-6817, 2018.
[18]J. Tauc, R. Grigorovici, and A. Vancu, "Optical properties and electronic structure of amorphous germanium," Physica Status Solidi (b), vol. 15, no. 2, pp. 627-637, 1966.
[19]M. Riordan and L. Hoddeson, "The origins of the pn junction," IEEE Spectrum, vol. 34, no. 6, pp. 46-51, 1997.
[20]E. Hu, Z. Jiang, L. Fan, M. Singh, F. Wang, R. Raza, M. Sajid, J. Wang, J.-S. Kim, and B. Zhu, "Junction and energy band on novel semiconductor-based fuel cells," iScience, vol. 24, no. 3, 2021.
[21]R. S. Andre, R. C. Sanfelice, A. Pavinatto, L. H. C. Mattoso, and D. S. Correa, "Hybrid nanomaterials designed for volatile organic compounds sensors: A review," Materials & Design, vol. 156, pp. 154-166, 2018.
[22]T. Sen, S. Mishra, and N. G. Shimpi, "Synthesis and sensing applications of polyaniline nanocomposites: A review," RSC Advances, vol. 6, no. 48, pp. 42196-42222, 2016.
[23]O. Folorunso, P. Olukanmi, and S. Thokozani, "Conductive polymers’ electronic structure modification for multifunctional applications," Materials Today Communications, vol. 35, p. 106308, 2023.
[24]L. Chen, Z. Liu, Z. Guo, and X. J. Huang, "Regulation of intrinsic physicochemical properties of metal oxide nanomaterials for energy conversion and environmental detection applications," Journal of Materials Chemistry A, vol. 8, no. 34, pp. 17326-17359, 2020.
[25]Y. Guo, K. Xu, C. Wu, J. Zhao, and Y. Xie, "Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials," Chemical Society Reviews, vol. 44, no. 3, pp. 637-646, 2015.
[26]L. Zhu and W. Zeng, "Room-temperature gas sensing of ZnO-based gas sensor: A review," Sensors and Actuators A: Physical, vol. 267, pp. 242-261, 2017.
[27]C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, and Y. Wang, "A review on WO3 based gas sensors: Morphology control and enhanced sensing properties," Journal of Alloys and Compounds, vol. 820, p. 153194, 2020.
[28]S. Das and V. Jayaraman, "SnO2: A comprehensive review on structures and gas sensors," Progress in Materials Science, vol. 66, pp. 112-255, 2014.
[29]S. Das and M. Pal, "Non-invasive monitoring of human health by exhaled breath analysis: A comprehensive review," Journal of The Electrochemical Society, vol. 167, no. 3, p. 37562, 2020.
[30]A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D. H. Kim, K. H. Lim, J. Li, and P. Chen, "Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing," Advanced Functional Materials, vol. 24, no. 20, pp. 3021-3026, 2014.
[31]M. Arafat, A. Haseeb, and S. Akbar, "Developments in semiconducting oxide-based gas-sensing materials," Comprehensive Materials Processing, vol. 13, pp. 205-219, 2014.
[32]J. Zhang, Z. Qin, D. Zeng, and C. Xie, "Metal-oxide-semiconductor based gas sensors: Screening, preparation, and integration," Physical Chemistry Chemical Physics, vol. 19, no. 9, pp. 6313-6329, 2017.
[33]D. R. Miller, S. A. Akbar, and P. A. Morris, "Nanoscale metal oxide-based heterojunctions for gas sensing: A review," Sensors and Actuators B: Chemical, vol. 204, pp. 250-272, 2014.
[34]K. Polychronopoulou and M. A. Jaoudé, "Nano-architectural advancement of CeO2-driven catalysis via electrospinning," Surface and Coatings Technology, vol. 350, pp. 245-280, 2018.
[35]R. Ramaseshan, S. Sundarrajan, R. Jose, and S. Ramakrishna, "Nanostructured ceramics by electrospinning," Journal of Applied Physics, vol. 102, no. 11, 2007.
[36]S. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, "Systematic parameter study for ultra-fine fiber fabrication via electrospinning process," Polymer, vol. 46, no. 16, pp. 6128-6134, 2005.
[37]J. Xue, T. Wu, Y. Dai, and Y. Xia, "Electrospinning and electrospun nanofibers: Methods, materials, and applications," Chemical Reviews, vol. 119, no. 8, pp. 5298-5415, 2019.
[38]A. M. AlDhahebi, J. Ling, S. G. Krishnan, M. Yousefzadeh, N. K. Elumalai, M. S. M. Saheed, S. Ramakrishna, and R. Jose, "Electrospinning research and products: The road and the way forward," Applied Physics Reviews, vol. 9, no. 1, 2022.
[39]S. Ghosh, J. Majhi, S. Sharma, K. Priya, and A. Bandyopadhyay, "A review on the development of electron and ion conductive polymer hydrogels and their composites for flexible and smart supercapacitors," Journal of Energy Storage, vol. 74, p. 109423, 2023.
[40]L. A. Mercante, R. S. Andre, M. H. M. Facure, D. S. Correa, and L. H. C. Mattoso, "Recent progress in conductive electrospun materials for flexible electronics: Energy, sensing, and electromagnetic shielding applications," Chemical Engineering Journal, vol. 465, p. 142847, 2023.
[41]L. Schöbel and A. R. Boccaccini, "A review of glycosaminoglycan-modified electrically conductive polymers for biomedical applications," Acta Biomaterialia, vol. 169, pp. 45-65, 2023.
[42]V. S. Jamadade, D. S. Dhawale, and C. D. Lokhande, "Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior," Synthetic Metals, vol. 160, no. 9, pp. 955-960, 2010.
[43]J. C. Chiang and A. G. MacDiarmid, "'Polyaniline': Protonic acid doping of the emeraldine form to the metallic regime," vol. 13, no. 1-3, pp. 193-205, 1986.
[44]D. S. Dhawale, R. R. Salunkhe, V. S. Jamadade, T. P. Gujar, and C. D. Lokhande, "An approach towards the growth of polyaniline nanograins by electrochemical route," Applied Surface Science, vol. 255, no. 19,15, pp. 8213-8216, 2009.
[45]H. Bai and G. Shi, "Gas sensors based on conducting polymers," Sensors, vol. 7, no. 3, pp. 267-307, 2007.
[46]N. R. Tanguy, M. Thompson, and N. Yan, "A review on advances in application of polyaniline for ammonia detection," Sensors and Actuators B: Chemical, vol. 257, pp. 1044-1064, 2018.
[47]Y. C. Wong, B. C. Ang, A. Haseeb, A. A. Baharuddin, and Y. H. Wong, "Conducting polymers as chemiresistive gas sensing materials: A review," Journal of The Electrochemical Society, vol. 167, no. 3, p. 37503, 2020.
[48]D. N. Nguyen and H. Yoon, "Recent advances in nanostructured conducting polymers: From synthesis to practical applications," Polymers, vol. 8, no. 4, p. 118, 2016.
[49]A. K. Poddar, S. S. Patel, and H. D. Patel, "Synthesis, characterization and applications of conductive polymers: A brief review," Polymers for Advanced Technologies, vol. 32, no. 12, pp. 4616-4641, 2021.
[50]H. T. Das, E. B. T, S. Dutta, N. Das, P. Das, A. Mondal, and M. Imran, "Recent trend of CeO2-based nanocomposites electrode in supercapacitor: A review on energy storage applications," Journal of Energy Storage, vol. 50, p. 104643, 2022.
[51]P. Jasinski, T. Suzuki, and H. U. Anderson, "Nanocrystalline undoped ceria oxygen sensor," Sensors and Actuators B: Chemical, vol. 95, no. 1, pp. 73-77, 2003.
[52]S. Balaraman, B. Iruson, S. Krishnmoorthy, M. Elayaperumal, and S. Sangaraju, "Synthesis of Er2O3 blended CeO2 nanocomposites and investigation of their biomedical applications," Chemical Physics Impact, vol. 6, p. 100167, 2023.
[53]M. Shirzad Choubari, J. Mazloom, and F. E. Ghodsi, "Supercapacitive properties, optical band gap, and photoluminescence of CeO2–ZnO nanocomposites prepared by eco-friendly green and citrate sol-gel methods: A comparative study," Ceramics International, vol. 48, no. 15, pp. 21344-21354, 2022.
[54]S. Sultana, S. Mansingh, and K. M. Parida, "Crystal facet and surface defect engineered low dimensional CeO2 (0D, 1D, 2D) based photocatalytic materials towards energy generation and pollution abatement," Materials Advances, vol. 2, no. 21, pp. 6942-6983, 2021.
[55]Y. Xie, J. Wen, Z. Li, J. Chen, Q. Zhang, P. Ning, Y. Chen, and J. Hao, "Progress in reaction mechanisms and catalyst development of ceria-based catalysts for low-temperature CO2 methanation," Green Chemistry, vol. 25, no. 1, pp. 130-152, 2023.
[56]Y. Liu, Y. Ding, L. Zhang, P. X. Gao, and Y. Lei, "CeO2 nanofibers for in situ O2 and CO sensing in harsh environments," RSC Advances, vol. 2, no. 12, pp. 5193-5198, 2012.
[57]Q. Hu, B. Huang, Y. Li, S. Zhang, Y. Zhang, X. Hua, G. Liu, B. Li, J. Zhou, E. Xie, and Z. Zhang, "Methanol gas detection of electrospun CeO2 nanofibers by regulating Ce3+/ Ce4+ mole ratio via Pd doping," Sensors and Actuators B: Chemical, vol. 307, p. 127638, 2020.
[58]D. Van Dao, T. T. D. Nguyen, S. M. Majhi, G. Adilbish, H. J. Lee, Y. T. Yu, and I. H. Lee, "Ionic liquid-supported synthesis of CeO2 nanoparticles and its enhanced ethanol gas sensing properties," Materials Chemistry and Physics, vol. 231, pp. 1-8, 2019.
[59]H. X. Mai, L. D. Sun, Y. W. Zhang, R. Si, W. Feng, H. P. Zhang, H. C. Liu, and C. H. Yan, "Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes," The Journal of Physical Chemistry B, vol. 109, no. 51, pp. 24380-24385, 2005.
[60]X. H. Lu, D. Z. Zheng, J. Y. Gan, Z. Q. Liu, C. L. Liang, P. Liu, and Y. X. Tong, "Porous CeO2 nanowires/nanowire arrays: Electrochemical synthesis and application in water treatment," Journal of Materials Chemistry, vol. 20, no. 34, pp. 7118-7122, 2010.
[61]F. Zhang, Q. Jin, and S. W. Chan, "Ceria nanoparticles: Size, size distribution, and shape," Journal of Applied Physics, vol. 95, no. 8, pp. 4319-4326, 2004.
[62]A. Hadi and I. I. Yaacob, "Novel synthesis of nanocrystalline CeO2 by mechanochemical and water-in-oil microemulsion methods," Materials Letters, vol. 61, no. 1, pp. 93-96, 2007.
[63]Z. Yu, L. Tetard, L. Zhai, and J. Thomas, "Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions," Energy & Environmental Science, vol. 8, no. 3, pp. 702-730, 2015.
[64]L. Yu, X. Y. Yu, and X. W. Lou, "The design and synthesis of hollow micro‐/nanostructures: Present and future trends," Advanced Materials, vol. 30, no. 38, p. 1800939, 2018.
[65]X. Yang, C. Shao, Y. Liu, R. Mu, and H. Guan, "Nanofibers of CeO2 via an electrospinning technique," Thin Solid Films, vol. 478, no. 1, pp. 228-231, 2005.
[66]X. Hai, J. Feng, X. Chen, and J. Wang, "Tuning the optical properties of graphene quantum dots for biosensing and bioimaging," Journal of Materials Chemistry B, vol. 6, no. 20, pp. 3219-3234, 2018.
[67]N. R. Ko, M. Nafiujjaman, J. S. Lee, H. N. Lim, Y. k. Lee, and I. K. Kwon, "Graphene quantum dot-based theranostic agents for active targeting of breast cancer," RSC Advances, vol. 7, no. 19, pp. 11420-11427, 2017.
[68]A. Kumar, M. I. Sayyed, D. Punina, E. Naranjo, E. Jácome, M. K. Abdulameer, H. J. Albazoni, and Z. Shariatinia, "Graphene quantum dots (GQD) and edge-functionalized GQDs as hole transport materials in perovskite solar cells for producing renewable energy: A DFT and TD-DFT study," RSC Advances, vol. 13, no. 42, pp. 29163-29173, 2023.
[69]A. Cayuela, M. Soriano, C. CarrilloCarrión, and M. Valcárcel, "Semiconductor and carbon-based fluorescent nanodots: The need for consistency," Chemical Communications, vol. 52, no. 7, pp. 1311-1326, 2016.
[70]S. Santra, S. Dutta, and A. Adalder, "Advances in the ratiometric combination of quantum dots for their use in sensing applications," Materials Advances, vol. 4, no. 20, pp. 4646-4664, 2023.
[71]L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, "Chaotic Dirac billiard in graphene quantum dots," Science, vol. 320, no. 5874, pp. 356-358, 2008.
[72]X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, "Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments," Journal of the American Chemical Society, vol. 126, no. 40, pp. 12736-12737, 2004.
[73]D. Kurniawan, R. J. Weng, Y. Y. Chen, M. R. Rahardja, Z. C. Nanaricka, and W. H. Chiang, "Recent advances in the graphene quantum dot-based biological and environmental sensors," Sensors and Actuators Reports, vol. 4, p. 100130, 2022.
[74]P. Cui, Q. Wu, and Z. Li, "Tuning photovoltaic performance of co-doped graphene quantum dots," Computational and Theoretical Chemistry, vol. 1233, p. 114507, 2024.
[75]Y. Dai, H. Long, X. Wang, Y. Wang, Q. Gu, W. Jiang, Y. Wang, C. Li, T. H. Zeng, and Y. Sun, "Versatile graphene quantum dots with tunable nitrogen doping," Particle & Particle Systems Characterization, vol. 31, no. 5, pp. 597-604, 2014.
[76]S. Kadian and G. Manik, "Sulfur doped graphene quantum dots as a potential sensitive fluorescent probe for the detection of quercetin," Food Chemistry, vol. 317, p. 126457, 2020.
[77]T. Schiros, D. Nordlund, L. Pálová, D. Prezzi, L. Zhao, K. S. Kim, U. Wurstbauer, C. Gutiérrez, D. Delongchamp, and C. Jaye, "Connecting dopant bond type with electronic structure in N-doped graphene," Nano letters, vol. 12, no. 8, pp. 4025-4031, 2012.
[78]A. Vesel, R. Zaplotnik, G. Primc, and M. Mozetič, "A review of strategies for the synthesis of N-doped graphene-like materials," Nanomaterials, vol. 10, no. 11, p. 2286, 2020.
[79]H. Y. Nguyen, X. H. Le, N. T. Dao, N. T. Pham, T. H. H. Vu, N. H. Nguyen, and T. N. Pham, "Microwave-assisted synthesis of graphene quantum dots and nitrogen-doped graphene quantum dots: Raman characterization and their optical properties," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 10, no. 2, p. 25005, 2019.
[80]M. Fan, C. Zhu, J. Yang, and D. Sun, "Facile self-assembly N-doped graphene quantum dots/graphene for oxygen reduction reaction," Electrochimica Acta, vol. 216, pp. 102-109, 2016.
[81]X. Zhu, Y. Li, P. Cao, P. Li, X. Xing, Y. Yu, R. Guo, and H. Yang, "Recent advances of graphene quantum dots in chemiresistive gas sensors," Nanomaterials, vol. 13, no. 21, p. 2880, 2023.
[82]M. Miah, S. Bhattacharya, A. Gupta, and S. K. Saha, "Origin of high storage capacity in N-doped graphene quantum dots," Electrochimica Acta, vol. 222, pp. 709-716, 2016.
[83]Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, and G. Chen, "Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid," Carbon, vol. 50, no. 12, pp. 4738-4743, 2012.
[84]C. Xia, X. Hai, X. W. Chen, and J. H. Wang, "Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection," Talanta, vol. 168, pp. 269-278, 2017.
[85]D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R. E. Haddad, H. Fan, and Z. Sun, "Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots," Scientific Reports, vol. 4, no. 1, p. 5294, 2014.
[86]Y. Yuan, H. Wu, X. Bu, Q. Wu, X. Wang, C. Han, X. Li, X. Wang, and W. Liu, "Improving ammonia detecting performance of polyaniline decorated rGO composite membrane with GO doping," Materials, vol. 14, no. 11, p. 2829, 2021.
[87]F. S. Hadano, A. E. X. Gavim, J. C. Stefanelo, S. L. Gusso, A. G. Macedo, P. C. Rodrigues, A. R. b. Mohd Yusoff, F. K. Schneider, J. F. d. Deus, and W. José da Silva, "NH3 sensor based on rGO-PANI composite with improved sensitivity," Sensors, vol. 21, no. 15, p. 4947, 2021.
[88]M. Hakimi, A. Salehi, F. Boroumand, and N. Mosleh, "Fabrication of a room temperature ammonia gas sensor based on polyaniline with N-doped graphene quantum dots," IEEE Sensors Journal, vol. 18, no. 6, pp. 2245-2252, 2018.
[89]C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du, G. Xie, and Y. Jiang, "A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature," Sensors and Actuators B: Chemical, vol. 261, pp. 587-597, 2018.
[90]Z. Ye, Y. Jiang, H. Tai, N. Guo, G. Xie, and Z. Yuan, "The investigation of reduced graphene oxide@ SnO2–polyaniline composite thin films for ammonia detection at room temperature," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 833-841, 2015.
[91]Q. Y. Huang, H. L. Liu, W. L. Hsu, and T. M. Wu, "The room temperature highly sensitive ammonia gas sensor based on polyaniline and nitrogen doped graphene quantum dot coated flower‐like tungsten oxide composite," Journal of Applied Polymer Science, vol. 141, no. 14, p. e55209, 2024.
[92]R. H. Vignesh, K. V. Sankar, S. Amaresh, Y. S. Lee, and R. K. Selvan, "Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor," Sensors and Actuators B: Chemical, vol. 220, pp. 50-58, 2015.
[93]F. W. Zeng, X. X. Liu, D. Diamond, and K. T. Lau, "Humidity sensors based on polyaniline nanofibres," Sensors and Actuators B: Chemical, vol. 143, no. 2, pp. 530-534, 2010.
[94]P. Li, B. Wang, C. Qin, C. Han, L. Sun, and Y. Wang, "Band-gap-tunable CeO2 nanoparticles for room-temperature NH3 gas sensors," Ceramics International, vol. 46, no. 11, Part B, pp. 19232-19240, 2020.
[95]Z. Hu, H. Zhang, H. Zhang, S. Yu, and J. Man, "High performance NH3 sensor based on CeO2/In2O3 heterostructure for mutton preservation detection," Materials Science in Semiconductor Processing, vol. 161, p. 107475, 2023.
[96]X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E. S. W. Kong, H. Wei, and Y. Zhang, "Reduced graphene oxide–polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing," Journal of Materials Chemistry, vol. 22, no. 42, pp. 22488-22495, 2012.
[97]J. N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, and A. Salehi, "Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature," Sensors and Actuators B: Chemical, vol. 229, pp. 239-248, 2016.
[98]Q. Nie, Z. Pang, D. Li, H. Zhou, F. Huang, Y. Cai, and Q. Wei, "Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 537, pp. 532-539, 2018.
[99]L. Wang, H. Huang, S. Xiao, D. Cai, Y. Liu, B. Liu, D. Wang, C. Wang, H. Li, Y. Wang, Q. Li, and T. Wang, "Enhanced sensitivity and stability of room-temperature NH3 sensors using core–shell CeO2 nanoparticles@cross-linked PANI with p–n heterojunctions," ACS Applied Materials & Interfaces, vol. 6, no. 16, pp. 14131-14140, 2014.
[100]S. Z. Hong, Q. Y. Huang, and T. M. Wu, "The room temperature highly sensitive ammonia gas sensor based on polyaniline and nitrogen-doped graphene quantum dot-coated hollow indium oxide nanofiber composite," Polymers, vol. 13, no. 21, p. 3676, 2021.
電子全文 電子全文(網際網路公開日期:20260715)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊