跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳益豪
研究生(外文):Yi-Hao Wu
論文名稱:鋁基陽極在不同水系鋁基電解液中的反應機制
論文名稱(外文):The Reaction Mechanism of Aluminum-based Anode in Various Aqueous Aluminum Electrolytes
指導教授:林孟昌顏秀崗顏秀崗引用關係
指導教授(外文):Meng-Chang LinShiow-Kang Yen
口試委員:朱鵬維
口試日期:2024-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:51
中文關鍵詞:水性鋁離子電池表面改性合金化方法不同陰離子水性鋁基電解質腐蝕活性人造固體電解質界面層
外文關鍵詞:Aqueous aluminum-ion batteriesSurface ModificationAlloying ApproachVarious Anionic Aqueous Aluminum-based ElectrolytesCorrosion ActivityArtificial solid Electrolyte Interface Layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
由於地殼中鋁含量豐富、成本低廉、理論容量高和固有的安全性,水鋁離子電池(AAIB)作為一種有前景的儲能係統而受到廣泛關注。儘管有這些優點,當代使用鋁或其合金陽極的AAIB仍面臨特定充電/放電過程的挑戰,且其活化機制仍不清楚。本研究探討了表面改質(在離子液體中處理的鋁,稱為T-Al)或合金化方法(例如Al-Cu 或Zn-Al 合金)如何影響各種陰離子水基鋁電解液的性能(例如1M Al(OTF)3、AlCl3 和 Al(NO3)3)。結果表明,表面改質和合金化都不足以支持這些水性電解質中鋁原子的可充電性。在使用這些電解質的對稱電池的整個充電/放電循環中,觀察到鋁及其合金的顯著溶解,並伴隨著顯著的氣體逸出。這些反應導致鋁及其合金在選定的水性電解質中腐蝕。鋁和 T-Al 陽極的腐蝕活性主要是由電解質中存在的氯陰離子或人造固體電解質界面層中的殘留物引發的。對於Al-Cu合金,Al2Cu奈米層狀結構的存在充當催化劑,促進水性電解質中α-Al的連續水解,從而產生H2。在測試的陽極中,鋅鋁合金陽極表現出最嚴重的氣體逸出反應,顯示在這些水性電解質中活性最高。這項研究首次闡明了在水性電解液鋁電池中使用表面改質或合金化方法時鋁陽極的反應機制。
Aqueous aluminum-ion batteries (AAIBs) have gained significant attention as promising energy storage systems due to aluminum's abundance in the Earth's crust, low cost, high theoretical capacity, and inherent safety. Despite these advantages, contemporary AAIBs utilizing aluminum or its alloy anodes face challenges with the specific charge/discharge processes, and their activation mechanisms remain unclear. This study examines how surface modification (aluminum treated in ionic liquids, referred to as T-Al) or alloying approach (such as Al-Cu or Zn-Al alloys) affect performance in various anionic aqueous aluminum-based electrolytes (e.g., 1M Al(OTF)3, AlCl3, and Al(NO3)3). Results indicate that neither surface modification nor alloying sufficiently supports the rechargeability of aluminum atoms from these aqueous electrolytes. Throughout the charge/discharge cycles in symmetric cells using these electrolytes, significant dissolution of aluminum and its alloys was observed, accompanied by notable gas evolution. These reactions caused aluminum and its alloys to corrode in the selected aqueous electrolytes. The corrosive activity of aluminum and T-Al anodes was primarily triggered by chloride anions present in the electrolytes or residual in the artificial solid electrolyte interface layer. In the case of the Al-Cu alloy, the presence of Al2Cu nano-lamellar structures acted as a catalyst, promoting continuous hydrolysis by α-Al in the aqueous electrolytes, thereby producing H2. The Zn-Al alloy anode exhibited the most severe gas evolution reactions among the tested anodes, indicating the highest activity in these aqueous electrolytes. For the first time, this research elucidates the reaction mechanisms at the Al anode when using surface modification or alloying approaches in aqueous electrolyte Al cells.
摘要 i
Abstract ii
目次 iii
圖目次(中文) v
第一章、緒論 1
1.1前言 1
1.2研究背景 1
1.3研究現況 2
1.4研究目的 2
第二章、文獻回顧 3
2.1鋁陽極的人工固體電解質介面 3
2.2鋁陽極的合金化 3
2.2.1 鋅鋁合金 3
2.2.2 鋁銅合金和鋁鈰合金 4
2.3陰極材料 5
2.4電解液 6
2.4.1濃度的影響 6
2.4.2添加劑改質 7
第三章、材料與實驗方法 9
3.1電極製備 9
3.1.1鋁陽極製備 9
3.1.2表面處理的鋁(T-Al) 9
3.1.2.1離子液體 9
3.1.2.2 T-Al陽極製備 10
3.1.3鋁銅合金 11
3.1.4鋅金屬 13
3.2電解液的製備 14
3.3測試裝置 14
3.4電化學測試方法 15
3.4.1循環伏安法(CV)測試 15
3.4.2恆流充放電測試 15
3.4.3交流阻抗(EIS)測試 15
3.4.4 塔菲爾極化法(Tafel)測試 15
3.4.5 伏安特性曲線(I−V 曲線)測試 15
3.5材料表徵方法 16
3.5.1 X射線衍射分析(XRD) 16
3.5.2 X射線光電子能譜(XPS) 16
3.5.3 掃描電子顯微鏡(SEM) 16
3.5.4 光學顯微鏡(OM) 16
3.5.5 傅立葉轉換紅外光譜(FTIR) 16
第四章、結果 17
4.1鋁銅合金的製造與表面特徵 17
4.2 T-Al的製備與表面特徵 19
4.3各種水性電解質對金屬/金屬對稱電池電化學性能的影響 21
4.3.1 在1M 三氟甲磺酸鋁(Al(OTF)3)中進行測試 21
4.3.2 在1M 含水氯化鋁(AlCl3·6H2O)中進行測試 23
4.3.3 在1M 氯化鋁(AlCl3)中進行測試 24
4.3.4 在1M 硝酸鋁(Al(NO3)3)中進行測試 25
4.4 Al82Cu18或Zn電極在1M AlCl3·6H2O和Al(OTF)3水性電解質中反應後的表面特徵 27
4.4.1 表面樣貌、XRD、SEM-EDS 27
4.5 Zn電極在1M AlCl3·6H2O和Al(OTF)3水性電解質中反應過後表面的XPS檢測 29
4.6 用鎢的對稱電池來證明鋁沉積 31
第五章、討論 35
5.1水性電解質中原始鋁陽極和鋁銅合金陽極的鈍化和活化機制 35
5.2處理過的鋁(T-Al)和鋁合金陽極的活性來源 38
5.2.1 T-Al陽極的活化機理 38
5.2.2 Al-Cu合金陽極的活化機理 41
5.2.3 Zn-Al合金陽極的活化機理 43
5.3 用於機械可充電Al-Air電池的Al-Cu合金和AlCl3水電解質 46
第六章、結論 48
參考文獻 49
1.Elia, G.A., et al., An Overview and Future Perspectives of Aluminum Batteries. Advanced Materials, 2016. 28(35): p. 7564-7579.
2.Elia, G.A., et al., An overview and prospective on Al and Al-ion battery technologies. Journal of Power Sources, 2021. 481: p. 228870.
3.Yuan, D., et al., Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks. Nano Materials Science, 2020. 2(3): p. 248-263.
4.Ding, P., et al., Simultaneous power generation and CO2valorization by aqueous Al–CO2batteries using nanostructured Bi2S3as the cathode electrocatalyst. Journal of Materials Chemistry A, 2020. 8(25): p. 12385-12390.
5.Dong, X., et al., A graphitized expanded graphite cathode for aluminum-ion battery with excellent rate capability. Journal of Energy Chemistry, 2022. 66: p. 38-44.
6.Zhao, Q., et al., Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Science Advances, 2018. 4(11): p. eaau8131.
7.Ru, Y., et al., Different positive electrode materials in organic and aqueous systems for aluminium ion batteries. Journal of Materials Chemistry A, 2019. 7(24): p. 14391-14418.
8.Böttcher, R., et al., Aluminum deposition and dissolution in [emim] Cl-based ionic liquids–kinetics of charge–transfer and the rate–determining step. Journal of The Electrochemical Society, 2020. 167(10): p. 102516.
9.Kumar, S., et al., Rechargeable Al-metal aqueous battery using NaMnHCF as a cathode: Investigating the role of coated-Al anode treatments for superior battery cycling performance. ACS Applied Energy Materials, 2020. 3(9): p. 8627-8635.
10.Yan, C., et al., Architecting a stable high-energy aqueous Al-ion battery. Journal of the American Chemical Society, 2020. 142(36): p. 15295-15304.
11.Long, Y., et al., Suppressing Al dendrite growth towards a long-life Al-metal battery. Energy Storage Materials, 2021. 34: p. 194-202.
12.Zhang, Y., et al., Aqueous Aluminum Cells: Mechanisms of Aluminum Anode Reactions and Role of the Artificial Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2021. 13(31): p. 37091-37101.
13.Arshadi Rastabi, S., et al., Metallurgical investigation of aluminum anode behavior in water-in-salt electrolyte for aqueous aluminum batteries. Journal of Power Sources, 2022. 523: p. 231066.
14.Ejigu, A., et al., Optimization of Electrolytes for High-Performance Aqueous Aluminum-Ion Batteries. ACS Applied Materials & Interfaces, 2022. 14(22): p. 25232-25245.
15.Hao, Q., et al., Bi-functional poly(vinylidene difluoride) coated Al anodes for highly rechargeable aqueous Al-ion batteries. Electrochimica Acta, 2022. 421: p. 140495.
16.Kumar, S., et al., Enabling Al-metal anodes for aqueous electrochemical cells by using low-cost eutectic mixtures as artificial protective interphase. Chemical Engineering Journal, 2022. 435: p. 134742.
17.Li, X., et al., Relieving hydrogen evolution and anodic corrosion of aqueous aluminum batteries with hybrid electrolytes. Journal of Materials Chemistry A, 2022. 10(9): p. 4739-4748.
18.Liu, Q., et al., MnAl Layered Double Hydroxides: A Robust Host for Aqueous Ammonium‐Ion Storage with Stable Plateau and High Capacity. Advanced Energy Materials, 2022: p. 2202908.
19.Ran, Q., et al., Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nature Communications, 2022. 13(1): p. 576.
20.Ran, Q., et al., Uniformly MXene‐Grafted Eutectic Aluminum‐Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminum‐Ion Battery. Advanced Functional Materials, 2022: p. 2211271.
21.Wang, Y., et al., Investigating intercalation mechanism of manganese oxide electrode in aqueous aluminum electrolyte. Electrochimica Acta, 2022. 405: p. 139808.
22.Yang, X., et al., Bimetallic Rechargeable Al/Zn Hybrid Aqueous Batteries Based on Al–Zn Alloys with Composite Electrolytes. Advanced Materials, 2022. 34(45): p. 2206099.
23.Li, C., et al., Optimization of an Artificial Solid Electrolyte Interphase Formed on an Aluminum Anode and Its Application in Rechargeable Aqueous Aluminum Batteries. ACS Applied Materials & Interfaces, 2023. 15(43): p. 50166-50173.
24.Li, X., et al., Copper hexacyanoferrate as a long-life cathode for aqueous aluminum ion batteries. Materials Today Energy, 2023. 31: p. 101205.
25.Nandi, S., et al., Vanadyl ethylene glycolate: A novel organic-inorganic electrode material for rechargeable aqueous aluminum-ion battery. Solid state ionics, 2023. 389: p. 116085.
26.Qi, Z., et al., Suppressing zinc dendrite growth in aqueous battery via Zn–Al alloying with spatially confined zinc reservoirs. Journal of Power Sources, 2023. 558: p. 232628.
27.Tang, W., et al., Reversible aqueous aluminum metal batteries enabled by a water-in-salt electrolyte. Green Energy & Environment, 2023.
28.Wang, Y., et al., Screen-printed water-in-salt Al ion battery for wearable electronics. Journal of Energy Storage, 2023. 63: p. 106983.
29.Wang, Y., et al., Paper-based aqueous Al ion battery with water-in-salt electrolyte. Green Energy & Environment, 2023. 8(5): p. 1380-1388.
30.Zheng, J., et al., Preintercalated Copper Hexacyanoferrate as a Long-Time Cycle Cathode Material for Aqueous Aluminum-Ion Batteries. ACS Sustainable Chemistry & Engineering, 2023. 11(16): p. 6280-6291.
31.Shao, H.B., et al., Electrochemical impedance spectroscopy analysis on the electrochemical dissolution of aluminum in an alkaline solution. Journal of Electroanalytical Chemistry, 2003. 549: p. 145-150.
32.Qin, L., et al., Electrochemical performance and Cu2+ modification of nickel metal organic framework derived tellurides for application in aluminum ion batteries. Journal of Electroanalytical Chemistry, 2023. 928: p. 117014.
33.Lahiri, A., S. Guan, and A. Chutia, Modulating aluminum solvation with ionic liquids for improved aqueous-based aluminum-ion batteries. ACS Applied Energy Materials, 2023. 6(23): p. 11874-11881.
34.Zhao, Z., et al., Solvation Structure Regulation for Highly Reversible Aqueous Al Metal Batteries. Journal of the American Chemical Society, 2024. 146(3): p. 2257-2266.
35.Zhou, X., D. Ward, and M. Foster, An analytical bond-order potential for the aluminum copper binary system. Journal of Alloys and Compounds, 2016. 680: p. 752-767.
36.Sherwood, P.M.A., Introduction to Studies of Aluminum and its Compounds by XPS. Surface Science Spectra, 1998. 5(1): p. 1-3.
37.Vedder, W. and D.A. Vermilyea, Aluminum + water reaction. Transactions of the Faraday Society, 1969. 65: p. 561.
38.Li, S.-L., J.-M. Song, and J.-Y. Uan, Mg-Mg2X (X=Cu, Sn) eutectic alloy for the Mg2X nano-lamellar compounds to catalyze hydrolysis reaction for H2 generation and the recycling of pure X metals from the reaction wastes. Journal of Alloys and Compounds, 2019. 772: p. 489-498.
39.Razaz, G., et al., Aluminum Alloy Anode with Various Iron Content Influencing the Performance of Aluminum-Ion Batteries. Materials, 2023. 16(3): p. 933.
40.Abdulsalam, M.I., A Study of Crevice Corrosion Susceptibility of Zn-Al Alloys in a High-pH Environment. Metals, 2023. 13(10): p. 1698.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top