雷晴安(2022)。濕熱及部分糊化處理對藜麥澱粉結構與理化性質及消化性之影響。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市。劉家麟(2020)。單一及雙重水熱處理對菱角澱粉理化性質及消化性之影響。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市。鍾佳辰(2023)。連續韌化與循環韌化對菱角澱粉物化性質及消化性之影響。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市。Aaliya, B., Sunooj, K. V., John, N. E., Navaf, M., Akhila, P. P., Sudheesh, C., Sabu, S., Sasidharan, A., Mir, S. A., & George, J. (2022). Impact of microwave irradiation on chemically modified talipot starches: A characterization study on heterogeneous dual modifications. International Journal of Biological Macromolecules, 209, 1943-1955.
Adkar, P., Dongare, A., Ambavade, S., & Bhaskar, V. (2014). Trapa bispinosa Roxb.: a review on nutritional and pharmacological aspects. Advances in Pharmacological Sciences, 2014.
Almeida, R. L. J., dos Santos Pereira, T., de Andrade Freire, V., Santiago, Â. M., Oliveira, H. M. L., de Sousa Conrado, L., & de Gusmão, R. P. (2019). Influence of enzymatic hydrolysis on the properties of red rice starch. International Journal of Biological Macromolecules, 141, 1210-1219.
Ambigaipalan, P., Hoover, R., Donner, E., & Liu, Q. (2014). Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat-moisture treatment at different temperatures and their impact on physicochemical properties. Food Chemistry, 143, 175-184.
BeMiller, J. N. (2018). Carbohydrate chemistry for food scientists: Elsevier.
Birt, D. F., Boylston, T., Hendrich, S., Jane, J.-L., Hollis, J., Li, L., McClelland, J., Moore, S., Phillips, G. J., & Rowling, M. (2013). Resistant starch: promise for improving human health. Advances in Nutrition, 4(6), 587-601.
Buleon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23(2), 85-112.
Cao, H., Sun, R., Liu, Y., Wang, X., Guan, X., Huang, K., & Zhang, Y. (2022). Appropriate microwave improved the texture properties of quinoa due to starch gelatinization from the destructed cyptomere structure. Food Chemistry, 14, 100347.
Chang, Q., Zheng, B., Zhang, Y., & Zeng, H. (2021). A comprehensive review of the factors influencing the formation of retrograded starch. International Journal of Biological Macromolecules, 186, 163-173.
Chang, Y.-H., & Lin, J.-H. (2007). Effects of molecular size and structure of amylopectin on the retrogradation thermal properties of waxy rice and waxy corn starches. Food Hydrocolloids, 21(4), 645-653.
Cheetham, N. W., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers, 36(4), 277-284.
Chen, X., Liu, Y., Xu, Z., Zhang, C., Liu, X., Sui, Z., & Corke, H. (2021). Microwave irradiation alters the rheological properties and molecular structure of hull-less barley starch. Food Hydrocolloids, 120, 106821.
Chen, Y., Yang, Q., Xu, X., Qi, L., Dong, Z., Luo, Z., Lu, X., & Peng, X. (2017). Structural changes of waxy and normal maize starches modified by heat moisture treatment and their relationship with starch digestibility. Carbohydrate Polymers, 177, 232-240.
Chi, C., Yang, Y., Li, S., Shen, X., Wang, M., Zhang, Y., Zheng, X., & Weng, L. (2023). Starch intrinsic crystals affected the changes of starch structures and digestibility during microwave heat-moisture treatment. International Journal of Biological Macromolecules, 240, 124297.
Chiang, P.-Y., Li, P.-H., Huang, C.-C., & Wang, C.-C. (2007). Changes in functional characteristics of starch during water caltrop (Trapa Quadrispinosa Roxb.) growth. Food Chemistry, 104(1), 376-382.
Chung, H.-J., Hoover, R., & Liu, Q. (2009a). The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. International Journal of Biological Macromolecules, 44(2), 203-210.
Chung, H.-J., Liu, Q., & Hoover, R. (2009b). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75(3), 436-447.
Colussi, R., Kringel, D., Kaur, L., da Rosa Zavareze, E., Dias, A. R. G., & Singh, J. (2020). Dual modification of potato starch: Effects of heat-moisture and high pressure treatments on starch structure and functionalities. Food Chemistry, 318, 126475.
da Rosa Zavareze, E., Storck, C. R., de Castro, L. A. S., Schirmer, M. A., & Dias, A. R. G. (2010). Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chemistry, 121(2), 358-365.
Deka, D., & Sit, N. (2016). Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biological Macromolecules, 92, 416-422.
Deng, S., Kang, C., Bayat, A., Kuru, E., Osbak, M., Barr, K., & Trovato, C. (2020). Rheological Properties of Clay-Based Drilling Fluids and Evaluation of Their Hole-Cleaning Performances in Horizontal Directional Drilling. Journal of Pipeline Systems Engineering and Practice 11(3), 04020031.
Dome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2020). Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers, 12(3), 641.
Dorneles, M. S., de Azevedo, E. S., & Noreña, C. P. Z. (2024). Effect of heat treatment at low moisture on the increase of resistant starch content in Araucaria angustifolia seed starch. Food Hydrocolloids, 150, 109639.
Emide, D., Magni, C., Saitta, F., Cardone, G., Botticella, E., Fessas, D., Iametti, S., Lafiandra, D., Sestili, F., & Marti, A. (2023). Molecular insights into the role of amylose/amylopectin ratio on gluten protein organization. Food Chemistry, 404, 134675.
Englyst, H. N., Kingman, S., & Cummings, J. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, S33-50.
Enríquez-Castro, C. M., Ramírez-Wong, B., Contreras-Jiménez, B. L., Quintero-Ramos, A., de Dios Figueroa-Cárdenas, J., & Vázquez-Lara, F. (2022). Effect of extrusion on the crystallinity, viscosity, damage starch, and thermal properties of corn flour, masa, and tortilla. Applied Food Research, 2(2), 100198.
Espinosa-Ramírez, J., De la Rosa-Millan, J., Pérez-Carrillo, E., & Serna-Saldívar, S. O. (2021). Assessment of the quality of fresh nixtamalized maize doughs with different degrees of cooking and milling: A comparison of Mixolab and RVA analyses. Journal of Cereal Science, 102, 103321.
French, D. (1973). Chemical and physical properties of starch. Journal of Animal Science, 37(4), 1048-1061.
Guo, Y., Xu, T., Li, N., Cheng, Q., Qiao, D., Zhang, B., Zhao, S., Huang, Q., & Lin, Q. (2019). Supramolecular structure and pasting/digestion behaviors of rice starches following concurrent microwave and heat moisture treatment. International Journal of Biological Macromolecules, 135, 437-444.
Han, Z., Li, Y., Luo, D.-H., Zhao, Q., Cheng, J.-H., & Wang, J.-H. (2021). Structural variations of rice starch affected by constant power microwave treatment. Food Chemistry, 359, 129887.
Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45(3), 253-267.
Hosseini-Parvar, S., Matia-Merino, L., Goh, K., Razavi, S. M. A., & Mortazavi, S. A. (2010). Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: Effect of concentration and temperature. Journal of Food Engineering, 101(3), 236-243.
Hung, P.-Y., & Lai, L.-S. (2019). Structural characterization and rheological properties of the water extracted mucilage of Basella alba and the starch/aqueous mucilage blends. Food Hydrocolloids, 93, 413-421.
Hung, S.-H., & Lai, L.-S. (2024). Changes in the pasting and rheological properties of wheat, corn, water caltrop and lotus rhizome starches by the addition of Annona montana mucilage. International Journal of Biological Macromolecules, 265, 131009.
Huong, N. T. M., Hoa, P. N., & Van Hung, P. (2021). Effects of microwave treatments and retrogradation on molecular crystalline structure and in vitro digestibility of debranched mung-bean starches. International Journal of Biological Macromolecules, 190, 904-910.
Jane, J., Chen, Y., Lee, L., McPherson, A., Wong, K., Radosavljevic, M., & Kasemsuwan, T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, 76(5), 629-637.
Jayakody, L., & Hoover, R. (2008). Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins–A review. Carbohydrate Polymers, 74(3), 691-703.
Jenkins, P., & Donald, A. (1995). The influence of amylose on starch granule structure. International Journal of Biological Macromolecules, 17(6), 315-321.
Jia, R., Cui, C., Gao, L., Qin, Y., Ji, N., Dai, L., Wang, Y., Xiong, L., Shi, R., & Sun, Q. (2023). A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydrate Polymers, 321, 121260.
Kanase, V., Gupta, A., Patil, K., Bandarkar, A., & Khan, M. (2024). Water chestnut (Trapa natans L.): Nutritional, phytochemical and pharmacological aspects (An Overview). Journal of Pharmacognosy and Phytochemistry, 13(3), 46-50.
Kang, X., Jia, S., Gao, W., Wang, B., Zhang, X., Tian, Y., Sun, Q., Atef, M., Cui, B., & Abd El-Aty, A. M. (2022). The formation of starch-lipid complexes by microwave heating. Food Chemistry, 382, 132319.
Karow, M. F., Dos Santos, F. N., Biduski, B., Krolow, A. C. R., da Silva, F. T., El Halal, S. L. M., Macagnan, K. L., da Rosa Zavareze, E., Dias, A. R. G., & Diaz, P. S. (2024). Natural fermentation of potato (Solanum tuberosum L.) starch: Effect of cultivar, amylose content, and drying method on expansion, chemical and morphological properties. International Journal of Biological Macromolecules, 261, 129608.
Kaul, S., Kaur, K., Kaur, J., Mehta, N., & Kennedy, J. F. (2023). Properties of potato starch as influenced by microwave, ultrasonication, alcoholic-alkali and pre-gelatinization treatments. International Journal of Biological Macromolecules, 226, 1341-1351.
Kim, H.-Y., Ye, S.-J., & Baik, M.-Y. (2023). Physicochemical properties of pressure moisture treated (PMT) and heat moisture treated (HMT) starches. Innovative Food Science & Emerging Technologies, 87, 103392.
Lai, L. S., & Liao, C. L. (2002). Dynamic rheology of structural development in starch/decolourised hsian‐tsao leaf gum composite systems. Journal of the Science of Food and Agriculture, 82(10), 1200-1207.
Li, Y.-D., Xu, T.-C., Xiao, J.-X., Zong, A.-Z., Qiu, B., Jia, M., Liu, L.-N., & Liu, W. (2018). Efficacy of potato resistant starch prepared by microwave–toughening treatment. Carbohydrate Polymers, 192, 299-307.
Liu, G., Zhang, R., Huo, S., Li, J., Wang, M., Wang, W., Yuan, Z., Hu, A., & Zheng, J. (2023a). Insights into the changes of structure and digestibility of microwave and heat moisture treated quinoa starch. International Journal of Biological Macromolecules, 246, 125681.
Liu, R., Zhang, Y., Hu, H., Gan, T., & Huang, Z. (2023b). Retrogradation behavior of starch dough prepared from damaged cassava starch and its application in functional gluten-free noodles. International Journal of Biological Macromolecules, 236, 123996.
Masina, N., Choonara, Y. E., Kumar, P., du Toit, L. C., Govender, M., Indermun, S., & Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydrate Polymers, 157, 1226-1236.
Oyeyinka, S. A., Akintayo, O. A., Adebo, O. A., Kayitesi, E., & Njobeh, P. B. (2021a). A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. International Journal of Biological Macromolecules, 176, 87-95.
Oyeyinka, S. A., Singh, S., & Amonsou, E. O. (2021b). A review on structural, digestibility and physicochemical properties of legume starch-lipid complexes. Food Chemistry, 349, 129165.
Park, E. Y., Ma, J.-G., Kim, J., Lee, D. H., Kim, S. Y., Kwon, D.-J., & Kim, J.-Y. (2018). Effect of dual modification of HMT and crosslinking on physicochemical properties and digestibility of waxy maize starch. Food Hydrocolloids, 75, 33-40.
Pozo, C., Rodríguez-Llamazares, S., Bouza, R., Barral, L., Castaño, J., Müller, N., & Restrepo, I. (2018). Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of Polymer Research, 25, 1-8.
Ramírez-Brewer, D., Quintana, S. E., & García-Zapateiro, L. A. (2023). Effect of microwave treatment on technological, physicochemical, rheological and microstructural properties of mango (Mangifera indica) kernel starch variety Tommy and Sugar. LWT-Food Science and Technology, 187, 115311.
Schafranski, K., Ito, V. C., & Lacerda, L. G. (2021). Impacts and potential applications: A review of the modification of starches by heat-moisture treatment (HMT). Food Hydrocolloids, 117, 106690.
Shen, L., Li, J., & Li, Y. (2022). Resistant starch formation in rice: Genetic regulation and beyond. Plant Communications, 3(3), 100329.
Singh, J., Dartois, A., & Kaur, L. (2010). Starch digestibility in food matrix: a review. Trends in Food Science & Technology, 21(4), 168-180.
Steffe, J. F. (1996). Rheological Methods in Food Process Engineering: Freeman Press.
Su, C., Zhao, K., Zhang, B., Liu, Y., Jing, L., Wu, H., Gou, M., Jiang, H., Zhang, G., & Li, W. (2020). The molecular mechanism for morphological, crystal, physicochemical and digestible property modification of wheat starch after repeated versus continuous heat-moisture treatment. LWT-Food Science and Technology, 129, 109399.
Su, Q., Cai, S., Duan, Q., Huang, W., Huang, Y., Chen, P., & Xie, F. (2024). Combined effect of heat moisture and ultrasound treatment on the physicochemical, thermal and structural properties of new variety of purple rice starch. International Journal of Biological Macromolecules, 261, 129748.
Sun, Q., Han, Z., Wang, L., & Xiong, L. (2014). Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment. Food Chemistry, 145, 756-764.
Sun, X., Sun, Z., Saleh, A. S., Lu, Y., Zhang, X., Ge, X., Shen, H., Yu, X., & Li, W. (2023). Effects of various microwave intensities collaborated with different cold plasma duration time on structural, physicochemical, and digestive properties of lotus root starch. Food Chemistry, 405, 134837.
Tester, R. (1997). Properties of damaged starch granules: Composition and swelling properties of maize, rice, pea and potato starch fractions in water at various temperatures. Food Hydrocolloids, 11(3), 293-301.
Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165.
Tester, R. F., & Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry, 67(6), 551-557.
Tian, Y., Wang, Y., Herbuger, K., Petersen, B. L., Cui, Y., Blennow, A., Liu, X., & Zhong, Y. (2023). High-pressure pasting performance and multilevel structures of short-term microwave-treated high-amylose maize starch. Carbohydrate Polymers, 322, 121366.
Vamadevan, V., & Bertoft, E. (2020). Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloids, 103, 105663.
Van Soest, J. J., Tournois, H., de Wit, D., & Vliegenthart, J. F. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Research, 279, 201-214.
Walter, M., da Silva, L. P., & Denardin, C. C. (2005). Rice and resistant starch: different content depending on chosen methodology. Journal of Food Composition and Analysis, 18(4), 279-285.
Wang, C.-C., Chiang, P.-Y., Li, P.-H., & Huang, C.-C. (2008). Physicochemical properties of water caltrop (Trapa taiwanensis Nakai) starch during growth period. Carbohydrate Polymers, 71(2), 310-315.
Wang, C.-C., Ciou, J.-Y., & Chiang, P.-Y. (2009). Effect of micronization on functional properties of the water caltrop (Trapa taiwanensis Nakai) pericarp. Food Chemistry, 113(4), 970-974.
Wang, H., Qiu, J., Wu, Y., & Ouyang, J. (2024). Impact of soluble soybean polysaccharide on the gelatinization and retrogradation of corn starches with different amylose content. Food Research International, 184, 114254.
Wang, L., Wang, M., Zhou, Y., Wu, Y., & Ouyang, J. (2022a). Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chemistry, 377, 131990.
Wang, L., Xie, B., Shi, J., Xue, S., Deng, Q., Wei, Y., & Tian, B. (2010). Physicochemical properties and structure of starches from Chinese rice cultivars. Food Hydrocolloids, 24(2-3), 208-216.
Wang, W., Hu, A., Li, J., Liu, G., Wang, M., & Zheng, J. (2022b). Comparison of physicochemical properties and digestibility of sweet potato starch after two modifications of microwave alone and microwave-assisted L-malic acid. Int J Biol Macromol, 210, 614-621.
Wang, W., Hu, A., Li, J., Liu, G., Wang, M., & Zheng, J. (2022c). Comparison of physicochemical properties and digestibility of sweet potato starch after two modifications of microwave alone and microwave-assisted L-malic acid. International Journal of Biological Macromolecules, 210, 614-621.
Xie, S. X., Liu, Q., & Cui, S. W. (2005). Starch Modification and Applications.
Xu, X., Chen, Y., Luo, Z., & Lu, X. (2019). Different variations in structures of A-and B-type starches subjected to microwave treatment and their relationships with digestibility. LWT-Food Science and Technology, 99, 179-187.
Yee, J., Roman, L., Pico, J., Aguirre-Cruz, A., Bello-Perez, L. A., Bertoft, E., & Martinez, M. M. (2021). The molecular structure of starch from different Musa genotypes: Higher branching density of amylose chains seems to promote enzyme-resistant structures. Food Hydrocolloids, 112, 106351.
Yu, H., & Shen, S. (2015). Phenolic composition, antioxidant, antimicrobial and antiproliferative activities of water caltrop pericarps extract. LWT-Food Science and Technology, 61(1), 238-243.
Zailani, M. A., Kamilah, H., Husaini, A., Awang Seruji, A. Z. R., & Sarbini, S. R. (2022). Functional and digestibility properties of sago (Metroxylon sagu) starch modified by microwave heat treatment. Food Hydrocolloids, 122, 107042.
Zhang, C., Jia, J., Gao, M., Liu, Y., Dou, B., & Zhang, N. (2024). Effect of different heat-moisture treatment times on the structure, physicochemical properties and in vitro digestibility of japonica starch. International Journal of Biological Macromolecules, 259, 129173.
Zhang, G., Xuan, Y., Lyu, F., & Ding, Y. (2023). Microstructural, physicochemical properties and starch digestibility of brown rice flour treated with extrusion and heat moisture. International Journal of Biological Macromolecules, 242, 124594.
Zheng, J., Wang, D., Duan, H., Guo, J., Zheng, Y., Li, W., & Yan, W. (2024). The effects of E-beam irradiation and microwave combination treatment on the morphology, structure and physicochemical properties of red adzuki bean starch. Food Hydrocolloids, 109913.
Zhong, Y., Xiang, X., Zhao, J., Wang, X., Chen, R., Xu, J., Luo, S., Wu, J., & Liu, C. (2020). Microwave pretreatment promotes the annealing modification of rice starch. Food Chemistry, 304, 125432.
Zhou, Y., Wang, M., Li, W., Liu, G., Wang, W., Zhi, W., Wang, M., Wang, R., Hu, A., & Zheng, J. (2022). Effects of dual modification of lysine and microwave on corn starch: In vitro digestibility and physicochemical properties. International Journal of Biological Macromolecules, 220, 426-434.
Zhu, F. (2016). Chemical composition, health effects, and uses of water caltrop. Trends in Food Science & Technology, 49, 136-145.