跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 20:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王博翔
研究生(外文):Bo-Siang Wang
論文名稱:微波輔助濕熱處理對菱角澱粉物化特性及消化性之影響
論文名稱(外文):Effects of microwave-assisted heat moisture treatment on the physicochemical properties and digestibility of water caltrop starch
指導教授:賴麗旭賴麗旭引用關係
指導教授(外文):Lih-Shiuh Lai
口試委員:翁義銘王俊權
口試委員(外文):Yi-Ming WengJiun-Chiuan Wang
口試日期:2024-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:143
中文關鍵詞:菱角澱粉微波輔助濕熱處理物化特性消化性質
外文關鍵詞:water caltrop starchmicrowave-assisted heat moisture treatmentphysicochemical propertiesdigestibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以菱角作為材料,探討菱角澱粉在不同的水分含量下經過微波輔助濕熱處理 (水分含量:15%、20%、25%、30% 及 35%,10 W/g,1 分鐘),對其顆粒外觀、物化性質及消化特性之影響。研究結果顯示,菱角澱粉經微波輔助濕熱處理後,在電子顯微鏡下發現,其顆粒表面出現些許凹陷,但在光學顯微鏡下並無顯著的差異,偏光十字性也仍保持完整。在 X 射線繞射分析結果中可觀察到修飾後的菱角澱粉的結晶型態維持原本的 A 型結構,相對結晶度則隨著微波輔助濕熱處理的水分含量的增加而下降,從紅外線光譜圖中也可得知其雙螺旋結構受到破壞。直鏈澱粉含量有稍微上升,破損澱粉含量隨微波輔助濕熱處理的水分含量上升有提高的趨勢,此趨勢可對應到相對結晶度的結果。快速黏度分析結果及示差熱掃描結果顯示經修飾後的澱粉其糊化溫度提高、糊化溫度範圍下降,表示澱粉的晶體結構更穩定且均勻度提高,也因修飾後限制了澱粉顆粒的膨潤,造成膨潤力及溶解度的下降,進而造成黏度的降低。消化性實驗中,微波輔助濕熱處理的水分含量低時其快速消化性澱粉減少,慢速消化性澱粉含量提升,消化性降低,而在微波輔助濕熱處理的水分含量高時發現抗性澱粉的含量有明顯下降的現象,表示在微波輔助濕熱處理的水分含量高時澱粉具有更好的消化性。在穩剪切實驗中觀察到黏度隨著微波輔助濕熱處理的水分含量增加而降低,與快速黏度分析的結果一致,所有樣品皆呈現假塑性流體行為,隨著微波輔助濕熱處理的水分含量的增加,其樣品的屈服應力逐漸降低,稠度指標也呈現下降的趨勢。在動態黏彈性實驗中儲存模量 (G') 皆大於損耗模量 (G"),呈現偏彈性固體的行為,且 tanδ 的值皆小於 0.1,呈現強凝膠特性,但隨著微波輔助濕熱處理的水分含量的提升,其值有逐漸上升,向黏性液體行為靠近。
This study investigates the effects of microwave-assisted heat moisture treatment on the granule morphology, physicochemical properties, and digestibility of water caltrop starch at different moisture contents (15%, 20%, 25%, 30%, and 35%) using 10W/g for 1 minute. The results indicate that after microwave-assisted heat moisture treatment, the starch granule surfaces exhibited slight depressions when observed under scanning electron microscopy. However, there were no significant differences observed under optical microscopy, and the birefringence cross remained intact in polarized light microscopy. X-ray diffraction analysis showed that the modified water caltrop starch retained its original A-type crystalline structure. However, the relative crystallinity decreased with increasing moisture content of microwave-assisted heat moisture treatment. Fourier-transform infrared spectroscopy revealed that the double-helix structure of the starch was disrupted. There was a slight increase in amylose content, and the damaged starch content tended to increase with higher moisture content of microwave-assisted heat moisture treatment, which corresponded to the decrease in relative crystallinity. Viscosity and thermal analyses indicated significant changes. The pasting temperature of the modified starch increased, while the pasting temperature range decreased, suggesting more stable and uniform crystalline structures. Differential scanning calorimetry (DSC) results showed an increase in gelatinization temperature with a narrower gelatinization range. The swelling power and solubility of the starch granules decreased due to restricted swelling after modification, resulting in lower viscosity. In terms of digestibility, the study found that at low moisture content of microwave-assisted heat moisture treatment, rapidly digestible starch decreased, slowly digestible starch increased, and the overall digestibility decreased. Conversely, at high moisture content of microwave-assisted heat moisture treatment, there was a significant decrease in resistant starch content, indicating better digestibility of the starch treated under higher moisture content of microwave-assisted heat moisture treatment conditions. In the steady shear experiment, it was observed that viscosity decreased with an increase in moisture content of microwave-assisted heat moisture treatment. This finding aligns with rapid viscosity analysis results. All samples exhibited pseudoplastic fluid behavior. As moisture content of microwave-assisted heat moisture treatment increased, yield stress gradually decreased, and viscosity index showed a decreasing trend. In dynamic viscoelastic experiments, storage modulus (G') consistently exceeded loss modulus (G"), indicating viscoelastic solid behavior. The tanδ values were all below 0.1, indicative of strong gel characteristics. However, with higher moisture content of microwave-assisted heat moisture treatment, tanδ values gradually increased, approaching behavior closer to viscous liquids.
摘要 i
Abstract iii
目錄 v
表目錄 x
圖目錄 xii
壹、 前言 1
貳、 文獻回顧 2
一、 菱角 2
(一)、 二角菱 2
(二)、 四角菱 3
二、 澱粉 6
(一)、 直鏈澱粉 6
(二)、 支鏈澱粉 6
(三)、 澱粉的結晶型態 10
三、 澱粉的理化性質 15
(一)、 糊化 (Gelatinization) 15
(二)、 回凝 (Retrogradation) 16
(三)、 消化性質 18
(四)、 流變性質 23
四、 修飾澱粉 27
(一)、 酵素性修飾 27
(二)、 化學性修飾 27
(三)、 物理性修飾 28
參、 研究目的 40
肆、 研究架構 41
伍、 材料與方法 42
一、 材料 42
二、 菱角生粉製備 42
三、 菱角澱粉製備 42
四、 微波輔助濕熱處理 43
五、 基本成分分析 45
(一)、 水分 45
(二)、 粗灰分 45
(三)、 粗脂肪 46
(四)、 粗纖維 46
(五)、 粗蛋白 47
六、 澱粉顆粒外觀 48
(一)、 光學顯微鏡 48
(二)、 偏光十字性 48
(三)、 掃描式電子顯微鏡 49
七、 澱粉結構分析 49
(一)、 X-射線繞射分析 49
(二)、 傅立葉紅外線光譜分析 50
(三)、 分子量 50
八、 澱粉組成分析 52
(一)、 直鏈澱粉含量 52
(二)、 破損澱粉含量 54
(三)、 基於體外消化性之澱粉區分 56
九、 物理性質 59
(一)、 示差掃描熱分析 59
(二)、 連續糊化黏度 59
(三)、 膨潤力及溶解度 60
(四)、 澱粉糊型態 61
(五)、 流變性質 61
十、 體外水解率及GI值模擬 63
十一、 統計分析 65
陸、 結果與討論 66
一、 基本成分分析 66
二、 澱粉顆粒外觀 68
(一)、 光學顯微鏡觀察 68
(二)、 偏光十字性觀察 68
(三)、 掃描式電子顯微鏡 69
三、 結構分析 75
(一)、 X-射線繞射分析 75
(二)、 紅外線光譜分析 80
(三)、 分子量 84
四、 澱粉組成分析 90
(一)、 直鏈澱粉及破損澱粉的含量 90
(二)、 基於體外消化性所得澱粉區分含量之變化 94
五、 物理性質 97
(一)、 示差掃描熱分析 97
(二)、 連續糊化黏度 102
(三)、 膨潤力及溶解度 107
(四)、 流變性質 118
六、 澱粉之體外水解率及GI值模擬 127
柒、 結論 131
捌、 參考文獻 134
雷晴安(2022)。濕熱及部分糊化處理對藜麥澱粉結構與理化性質及消化性之影響。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市。
劉家麟(2020)。單一及雙重水熱處理對菱角澱粉理化性質及消化性之影響。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市。
鍾佳辰(2023)。連續韌化與循環韌化對菱角澱粉物化性質及消化性之影響。碩士論文。國立中興大學食品暨應用生物科技學系所。台中市。
Aaliya, B., Sunooj, K. V., John, N. E., Navaf, M., Akhila, P. P., Sudheesh, C., Sabu, S., Sasidharan, A., Mir, S. A., & George, J. (2022). Impact of microwave irradiation on chemically modified talipot starches: A characterization study on heterogeneous dual modifications. International Journal of Biological Macromolecules, 209, 1943-1955.
Adkar, P., Dongare, A., Ambavade, S., & Bhaskar, V. (2014). Trapa bispinosa Roxb.: a review on nutritional and pharmacological aspects. Advances in Pharmacological Sciences, 2014.
Almeida, R. L. J., dos Santos Pereira, T., de Andrade Freire, V., Santiago, Â. M., Oliveira, H. M. L., de Sousa Conrado, L., & de Gusmão, R. P. (2019). Influence of enzymatic hydrolysis on the properties of red rice starch. International Journal of Biological Macromolecules, 141, 1210-1219.
Ambigaipalan, P., Hoover, R., Donner, E., & Liu, Q. (2014). Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat-moisture treatment at different temperatures and their impact on physicochemical properties. Food Chemistry, 143, 175-184.
BeMiller, J. N. (2018). Carbohydrate chemistry for food scientists: Elsevier.
Birt, D. F., Boylston, T., Hendrich, S., Jane, J.-L., Hollis, J., Li, L., McClelland, J., Moore, S., Phillips, G. J., & Rowling, M. (2013). Resistant starch: promise for improving human health. Advances in Nutrition, 4(6), 587-601.
Buleon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23(2), 85-112.
Cao, H., Sun, R., Liu, Y., Wang, X., Guan, X., Huang, K., & Zhang, Y. (2022). Appropriate microwave improved the texture properties of quinoa due to starch gelatinization from the destructed cyptomere structure. Food Chemistry, 14, 100347.
Chang, Q., Zheng, B., Zhang, Y., & Zeng, H. (2021). A comprehensive review of the factors influencing the formation of retrograded starch. International Journal of Biological Macromolecules, 186, 163-173.
Chang, Y.-H., & Lin, J.-H. (2007). Effects of molecular size and structure of amylopectin on the retrogradation thermal properties of waxy rice and waxy corn starches. Food Hydrocolloids, 21(4), 645-653.
Cheetham, N. W., & Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers, 36(4), 277-284.
Chen, X., Liu, Y., Xu, Z., Zhang, C., Liu, X., Sui, Z., & Corke, H. (2021). Microwave irradiation alters the rheological properties and molecular structure of hull-less barley starch. Food Hydrocolloids, 120, 106821.
Chen, Y., Yang, Q., Xu, X., Qi, L., Dong, Z., Luo, Z., Lu, X., & Peng, X. (2017). Structural changes of waxy and normal maize starches modified by heat moisture treatment and their relationship with starch digestibility. Carbohydrate Polymers, 177, 232-240.
Chi, C., Yang, Y., Li, S., Shen, X., Wang, M., Zhang, Y., Zheng, X., & Weng, L. (2023). Starch intrinsic crystals affected the changes of starch structures and digestibility during microwave heat-moisture treatment. International Journal of Biological Macromolecules, 240, 124297.
Chiang, P.-Y., Li, P.-H., Huang, C.-C., & Wang, C.-C. (2007). Changes in functional characteristics of starch during water caltrop (Trapa Quadrispinosa Roxb.) growth. Food Chemistry, 104(1), 376-382.
Chung, H.-J., Hoover, R., & Liu, Q. (2009a). The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. International Journal of Biological Macromolecules, 44(2), 203-210.
Chung, H.-J., Liu, Q., & Hoover, R. (2009b). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75(3), 436-447.
Colussi, R., Kringel, D., Kaur, L., da Rosa Zavareze, E., Dias, A. R. G., & Singh, J. (2020). Dual modification of potato starch: Effects of heat-moisture and high pressure treatments on starch structure and functionalities. Food Chemistry, 318, 126475.
da Rosa Zavareze, E., Storck, C. R., de Castro, L. A. S., Schirmer, M. A., & Dias, A. R. G. (2010). Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chemistry, 121(2), 358-365.
Deka, D., & Sit, N. (2016). Dual modification of taro starch by microwave and other heat moisture treatments. International Journal of Biological Macromolecules, 92, 416-422.
Deng, S., Kang, C., Bayat, A., Kuru, E., Osbak, M., Barr, K., & Trovato, C. (2020). Rheological Properties of Clay-Based Drilling Fluids and Evaluation of Their Hole-Cleaning Performances in Horizontal Directional Drilling. Journal of Pipeline Systems Engineering and Practice 11(3), 04020031.
Dome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2020). Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers, 12(3), 641.
Dorneles, M. S., de Azevedo, E. S., & Noreña, C. P. Z. (2024). Effect of heat treatment at low moisture on the increase of resistant starch content in Araucaria angustifolia seed starch. Food Hydrocolloids, 150, 109639.
Emide, D., Magni, C., Saitta, F., Cardone, G., Botticella, E., Fessas, D., Iametti, S., Lafiandra, D., Sestili, F., & Marti, A. (2023). Molecular insights into the role of amylose/amylopectin ratio on gluten protein organization. Food Chemistry, 404, 134675.
Englyst, H. N., Kingman, S., & Cummings, J. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, S33-50.
Enríquez-Castro, C. M., Ramírez-Wong, B., Contreras-Jiménez, B. L., Quintero-Ramos, A., de Dios Figueroa-Cárdenas, J., & Vázquez-Lara, F. (2022). Effect of extrusion on the crystallinity, viscosity, damage starch, and thermal properties of corn flour, masa, and tortilla. Applied Food Research, 2(2), 100198.
Espinosa-Ramírez, J., De la Rosa-Millan, J., Pérez-Carrillo, E., & Serna-Saldívar, S. O. (2021). Assessment of the quality of fresh nixtamalized maize doughs with different degrees of cooking and milling: A comparison of Mixolab and RVA analyses. Journal of Cereal Science, 102, 103321.
French, D. (1973). Chemical and physical properties of starch. Journal of Animal Science, 37(4), 1048-1061.
Guo, Y., Xu, T., Li, N., Cheng, Q., Qiao, D., Zhang, B., Zhao, S., Huang, Q., & Lin, Q. (2019). Supramolecular structure and pasting/digestion behaviors of rice starches following concurrent microwave and heat moisture treatment. International Journal of Biological Macromolecules, 135, 437-444.
Han, Z., Li, Y., Luo, D.-H., Zhao, Q., Cheng, J.-H., & Wang, J.-H. (2021). Structural variations of rice starch affected by constant power microwave treatment. Food Chemistry, 359, 129887.
Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45(3), 253-267.
Hosseini-Parvar, S., Matia-Merino, L., Goh, K., Razavi, S. M. A., & Mortazavi, S. A. (2010). Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: Effect of concentration and temperature. Journal of Food Engineering, 101(3), 236-243.
Hung, P.-Y., & Lai, L.-S. (2019). Structural characterization and rheological properties of the water extracted mucilage of Basella alba and the starch/aqueous mucilage blends. Food Hydrocolloids, 93, 413-421.
Hung, S.-H., & Lai, L.-S. (2024). Changes in the pasting and rheological properties of wheat, corn, water caltrop and lotus rhizome starches by the addition of Annona montana mucilage. International Journal of Biological Macromolecules, 265, 131009.
Huong, N. T. M., Hoa, P. N., & Van Hung, P. (2021). Effects of microwave treatments and retrogradation on molecular crystalline structure and in vitro digestibility of debranched mung-bean starches. International Journal of Biological Macromolecules, 190, 904-910.
Jane, J., Chen, Y., Lee, L., McPherson, A., Wong, K., Radosavljevic, M., & Kasemsuwan, T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, 76(5), 629-637.
Jayakody, L., & Hoover, R. (2008). Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins–A review. Carbohydrate Polymers, 74(3), 691-703.
Jenkins, P., & Donald, A. (1995). The influence of amylose on starch granule structure. International Journal of Biological Macromolecules, 17(6), 315-321.
Jia, R., Cui, C., Gao, L., Qin, Y., Ji, N., Dai, L., Wang, Y., Xiong, L., Shi, R., & Sun, Q. (2023). A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydrate Polymers, 321, 121260.
Kanase, V., Gupta, A., Patil, K., Bandarkar, A., & Khan, M. (2024). Water chestnut (Trapa natans L.): Nutritional, phytochemical and pharmacological aspects (An Overview). Journal of Pharmacognosy and Phytochemistry, 13(3), 46-50.
Kang, X., Jia, S., Gao, W., Wang, B., Zhang, X., Tian, Y., Sun, Q., Atef, M., Cui, B., & Abd El-Aty, A. M. (2022). The formation of starch-lipid complexes by microwave heating. Food Chemistry, 382, 132319.
Karow, M. F., Dos Santos, F. N., Biduski, B., Krolow, A. C. R., da Silva, F. T., El Halal, S. L. M., Macagnan, K. L., da Rosa Zavareze, E., Dias, A. R. G., & Diaz, P. S. (2024). Natural fermentation of potato (Solanum tuberosum L.) starch: Effect of cultivar, amylose content, and drying method on expansion, chemical and morphological properties. International Journal of Biological Macromolecules, 261, 129608.
Kaul, S., Kaur, K., Kaur, J., Mehta, N., & Kennedy, J. F. (2023). Properties of potato starch as influenced by microwave, ultrasonication, alcoholic-alkali and pre-gelatinization treatments. International Journal of Biological Macromolecules, 226, 1341-1351.
Kim, H.-Y., Ye, S.-J., & Baik, M.-Y. (2023). Physicochemical properties of pressure moisture treated (PMT) and heat moisture treated (HMT) starches. Innovative Food Science & Emerging Technologies, 87, 103392.
Lai, L. S., & Liao, C. L. (2002). Dynamic rheology of structural development in starch/decolourised hsian‐tsao leaf gum composite systems. Journal of the Science of Food and Agriculture, 82(10), 1200-1207.
Li, Y.-D., Xu, T.-C., Xiao, J.-X., Zong, A.-Z., Qiu, B., Jia, M., Liu, L.-N., & Liu, W. (2018). Efficacy of potato resistant starch prepared by microwave–toughening treatment. Carbohydrate Polymers, 192, 299-307.
Liu, G., Zhang, R., Huo, S., Li, J., Wang, M., Wang, W., Yuan, Z., Hu, A., & Zheng, J. (2023a). Insights into the changes of structure and digestibility of microwave and heat moisture treated quinoa starch. International Journal of Biological Macromolecules, 246, 125681.
Liu, R., Zhang, Y., Hu, H., Gan, T., & Huang, Z. (2023b). Retrogradation behavior of starch dough prepared from damaged cassava starch and its application in functional gluten-free noodles. International Journal of Biological Macromolecules, 236, 123996.
Masina, N., Choonara, Y. E., Kumar, P., du Toit, L. C., Govender, M., Indermun, S., & Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydrate Polymers, 157, 1226-1236.
Oyeyinka, S. A., Akintayo, O. A., Adebo, O. A., Kayitesi, E., & Njobeh, P. B. (2021a). A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. International Journal of Biological Macromolecules, 176, 87-95.
Oyeyinka, S. A., Singh, S., & Amonsou, E. O. (2021b). A review on structural, digestibility and physicochemical properties of legume starch-lipid complexes. Food Chemistry, 349, 129165.
Park, E. Y., Ma, J.-G., Kim, J., Lee, D. H., Kim, S. Y., Kwon, D.-J., & Kim, J.-Y. (2018). Effect of dual modification of HMT and crosslinking on physicochemical properties and digestibility of waxy maize starch. Food Hydrocolloids, 75, 33-40.
Pozo, C., Rodríguez-Llamazares, S., Bouza, R., Barral, L., Castaño, J., Müller, N., & Restrepo, I. (2018). Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of Polymer Research, 25, 1-8.
Ramírez-Brewer, D., Quintana, S. E., & García-Zapateiro, L. A. (2023). Effect of microwave treatment on technological, physicochemical, rheological and microstructural properties of mango (Mangifera indica) kernel starch variety Tommy and Sugar. LWT-Food Science and Technology, 187, 115311.
Schafranski, K., Ito, V. C., & Lacerda, L. G. (2021). Impacts and potential applications: A review of the modification of starches by heat-moisture treatment (HMT). Food Hydrocolloids, 117, 106690.
Shen, L., Li, J., & Li, Y. (2022). Resistant starch formation in rice: Genetic regulation and beyond. Plant Communications, 3(3), 100329.
Singh, J., Dartois, A., & Kaur, L. (2010). Starch digestibility in food matrix: a review. Trends in Food Science & Technology, 21(4), 168-180.
Steffe, J. F. (1996). Rheological Methods in Food Process Engineering: Freeman Press.
Su, C., Zhao, K., Zhang, B., Liu, Y., Jing, L., Wu, H., Gou, M., Jiang, H., Zhang, G., & Li, W. (2020). The molecular mechanism for morphological, crystal, physicochemical and digestible property modification of wheat starch after repeated versus continuous heat-moisture treatment. LWT-Food Science and Technology, 129, 109399.
Su, Q., Cai, S., Duan, Q., Huang, W., Huang, Y., Chen, P., & Xie, F. (2024). Combined effect of heat moisture and ultrasound treatment on the physicochemical, thermal and structural properties of new variety of purple rice starch. International Journal of Biological Macromolecules, 261, 129748.
Sun, Q., Han, Z., Wang, L., & Xiong, L. (2014). Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment. Food Chemistry, 145, 756-764.
Sun, X., Sun, Z., Saleh, A. S., Lu, Y., Zhang, X., Ge, X., Shen, H., Yu, X., & Li, W. (2023). Effects of various microwave intensities collaborated with different cold plasma duration time on structural, physicochemical, and digestive properties of lotus root starch. Food Chemistry, 405, 134837.
Tester, R. (1997). Properties of damaged starch granules: Composition and swelling properties of maize, rice, pea and potato starch fractions in water at various temperatures. Food Hydrocolloids, 11(3), 293-301.
Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165.
Tester, R. F., & Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry, 67(6), 551-557.
Tian, Y., Wang, Y., Herbuger, K., Petersen, B. L., Cui, Y., Blennow, A., Liu, X., & Zhong, Y. (2023). High-pressure pasting performance and multilevel structures of short-term microwave-treated high-amylose maize starch. Carbohydrate Polymers, 322, 121366.
Vamadevan, V., & Bertoft, E. (2020). Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocolloids, 103, 105663.
Van Soest, J. J., Tournois, H., de Wit, D., & Vliegenthart, J. F. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Research, 279, 201-214.
Walter, M., da Silva, L. P., & Denardin, C. C. (2005). Rice and resistant starch: different content depending on chosen methodology. Journal of Food Composition and Analysis, 18(4), 279-285.
Wang, C.-C., Chiang, P.-Y., Li, P.-H., & Huang, C.-C. (2008). Physicochemical properties of water caltrop (Trapa taiwanensis Nakai) starch during growth period. Carbohydrate Polymers, 71(2), 310-315.
Wang, C.-C., Ciou, J.-Y., & Chiang, P.-Y. (2009). Effect of micronization on functional properties of the water caltrop (Trapa taiwanensis Nakai) pericarp. Food Chemistry, 113(4), 970-974.
Wang, H., Qiu, J., Wu, Y., & Ouyang, J. (2024). Impact of soluble soybean polysaccharide on the gelatinization and retrogradation of corn starches with different amylose content. Food Research International, 184, 114254.
Wang, L., Wang, M., Zhou, Y., Wu, Y., & Ouyang, J. (2022a). Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chemistry, 377, 131990.
Wang, L., Xie, B., Shi, J., Xue, S., Deng, Q., Wei, Y., & Tian, B. (2010). Physicochemical properties and structure of starches from Chinese rice cultivars. Food Hydrocolloids, 24(2-3), 208-216.
Wang, W., Hu, A., Li, J., Liu, G., Wang, M., & Zheng, J. (2022b). Comparison of physicochemical properties and digestibility of sweet potato starch after two modifications of microwave alone and microwave-assisted L-malic acid. Int J Biol Macromol, 210, 614-621.
Wang, W., Hu, A., Li, J., Liu, G., Wang, M., & Zheng, J. (2022c). Comparison of physicochemical properties and digestibility of sweet potato starch after two modifications of microwave alone and microwave-assisted L-malic acid. International Journal of Biological Macromolecules, 210, 614-621.
Xie, S. X., Liu, Q., & Cui, S. W. (2005). Starch Modification and Applications.
Xu, X., Chen, Y., Luo, Z., & Lu, X. (2019). Different variations in structures of A-and B-type starches subjected to microwave treatment and their relationships with digestibility. LWT-Food Science and Technology, 99, 179-187.
Yee, J., Roman, L., Pico, J., Aguirre-Cruz, A., Bello-Perez, L. A., Bertoft, E., & Martinez, M. M. (2021). The molecular structure of starch from different Musa genotypes: Higher branching density of amylose chains seems to promote enzyme-resistant structures. Food Hydrocolloids, 112, 106351.
Yu, H., & Shen, S. (2015). Phenolic composition, antioxidant, antimicrobial and antiproliferative activities of water caltrop pericarps extract. LWT-Food Science and Technology, 61(1), 238-243.
Zailani, M. A., Kamilah, H., Husaini, A., Awang Seruji, A. Z. R., & Sarbini, S. R. (2022). Functional and digestibility properties of sago (Metroxylon sagu) starch modified by microwave heat treatment. Food Hydrocolloids, 122, 107042.
Zhang, C., Jia, J., Gao, M., Liu, Y., Dou, B., & Zhang, N. (2024). Effect of different heat-moisture treatment times on the structure, physicochemical properties and in vitro digestibility of japonica starch. International Journal of Biological Macromolecules, 259, 129173.
Zhang, G., Xuan, Y., Lyu, F., & Ding, Y. (2023). Microstructural, physicochemical properties and starch digestibility of brown rice flour treated with extrusion and heat moisture. International Journal of Biological Macromolecules, 242, 124594.
Zheng, J., Wang, D., Duan, H., Guo, J., Zheng, Y., Li, W., & Yan, W. (2024). The effects of E-beam irradiation and microwave combination treatment on the morphology, structure and physicochemical properties of red adzuki bean starch. Food Hydrocolloids, 109913.
Zhong, Y., Xiang, X., Zhao, J., Wang, X., Chen, R., Xu, J., Luo, S., Wu, J., & Liu, C. (2020). Microwave pretreatment promotes the annealing modification of rice starch. Food Chemistry, 304, 125432.
Zhou, Y., Wang, M., Li, W., Liu, G., Wang, W., Zhi, W., Wang, M., Wang, R., Hu, A., & Zheng, J. (2022). Effects of dual modification of lysine and microwave on corn starch: In vitro digestibility and physicochemical properties. International Journal of Biological Macromolecules, 220, 426-434.
Zhu, F. (2016). Chemical composition, health effects, and uses of water caltrop. Trends in Food Science & Technology, 49, 136-145.
電子全文 電子全文(網際網路公開日期:20270819)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊