|
Atakisi, O., Atakisi, E., & Kart, A. (2009). Effects of dietary zinc and l-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitric oxide, egg weight, and blood biochemical values in Japanase quails. Biological Trace Element Research, 132, 136-143. Babu, S. S., Shareef, M. M., Shetty, A. P. K., & Shetty, K. T. (2002). HPLC method for amino acids profile in biological fluids and inborn metabolic disorders of aminoacidopathies. Indian Journal of Clinical Biochemistry, 17, 7-26. Batool, R., Butt, M. S., Sultan, M. T., Saeed, F., & Naz, R. (2015). Protein–energy malnutrition: A risk factor for various ailments. Critical Reviews in Food Science and Nutrition, 55(2), 242-253. Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61(2), 160-174. Bohé, J., Low, J. A., Wolfe, R. R., & Rennie, M. J. (2001). Rapid report: latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. The Journal of physiology, 532(2), 575-579. Brinkworth, G. D., Noakes, M., Clifton, P. M., & Bird, A. R. (2009). Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. British Journal of Nutrition, 101(10), 1493-1502. Brosnan, M. E., & Brosnan, J. T. (2020). Histidine metabolism and function. The Journal of Nutrition, 150, 2570S-2575S. Butel, M. J., & Waligora‐Dupriet, A. J. (2016). Probiotics and prebiotics: what are they and what can they do for us?. The Human Microbiota and Chronic Disease: Dysbiosis as a Cause of Human Pathology, 467-481. Charteris, W. P., Kelly, P. M., Morelli, L., & Collins, J. K. (1997). Selective detection, enumeration and identification of potentially probiotic Lactobacillus and Bifidobacterium species in mixed bacterial populations. International Journal of Food Microbiology, 35(1), 1-27. Corzo, A., Moran Jr, E. T., & Hoehler, D. (2003). Arginine need of heavy broiler males: Applying the ideal protein concept. Poultry Science, 82(3), 402-407. da Rosa Lima, T., Ávila, E. T. P., Fraga, G. A., de Souza Sena, M., de Souza Dias, A. B., de Almeida, P. C., dos Santos Trombeta, J. C., d Junior, R. C. V., Damazo, A. S., Navalta, J. W., Prestes, J., & Voltarelli, F. A. (2018). Effect of administration of high-protein diet in rats submitted to resistance training. European Journal of Nutrition, 57, 1083-1096. Daeschel, M. A., Andersson, R. E., & Fleming, H. P. (1987). Microbial ecology of fermenting plant materials. FEMS Microbiology Reviews, 3(3), 357-367. FAO, WHO. (2013). Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation. FAO Food Nutrition Paper 92, 1–66 FAO/WHO Working Group. (2002). Guidelines for the evaluation of probiotics in food. London, Available online: https://openknowledge.fao.org/server/api/core/bitstreams/382476b3-4d54-4175-803f-2f26f3526256/content Foo, H. L., Loh, T. C., Lai, P. W., Lim, Y. Z., Kufli, C. N., & Rusul, G. (2003). Effects of adding Lactobacillus plantarum I-UL4 metabolites in drinking water of rats. Pakistan Journal of Nutrition, 2(5), 283-8. Food and Agriculture Organization (FAO). (2008). FAOSTAT database, Available online: http://faostat3.fao.org. Food and Agriculture Organization/World Health Organization (FAO/WHO). (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria, Córdoba, Argentina, Available online: http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf. Friedman, A. N. (2004). High-protein diets: potential effects on the kidney in renal health and disease. American Journal of Kidney Diseases, 44(6), 950-962. Galili, G., Amir, R., & Fernie, A. R. (2016). The regulation of essential amino acid synthesis and accumulation in plants. Annual Review of Plant Biology, 67(1), 153-178. Gomes, A. M., & Malcata, F. X. (1999). Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends in Food Science & Technology, 10(4-5), 139-157. Gonzalez, J. M., & Aranda, B. (2023). Microbial growth under limiting conditions-future perspectives. Microorganisms, 11(7), 1641. Guarner, F., Khan, A. G., Garisch, J., Eliakim, R., Gangl, A., Thomson, A., Krabshuis, J., Lemair, T., Kaufmann, P., de Paula, J. A., Fedorak, R., Shanahan, F., Sanders, M. E., Szajewska, H., Ramakrishna, B. S., Karakan, T., & Kim, N. (2012). World gastroenterology organisation global guidelines: probiotics and prebiotics october 2011. Journal of Clinical Gastroenterology, 46(6), 468-481. Guedon, E., Sperandio, B., Pons, N., Ehrlich, S. D., & Renault, P. (2005). Overall control of nitrogen metabolism in Lactococcus lactis by CodY, and possible models for CodY regulation in Firmicutes. Microbiology, 151(12), 3895-3909. Gupta, V., & Garg, R. (2009). Probiotics. Indian Journal of Medical Microbiology, 27(3), 202-209. Hammes, W. P., & Vogel, R. F. (1995). The Genus Lactobacillus. In: The Lactic Acid Bacteria, Vol. 2, B.J.B. Wood, W.H. Holzapfel (Eds.), Chapman and Hall, London, UK, pp. 19–54. Henn, R. L., & Netto, F. M. (1998). Biochemical characterization and enzymatic hydrolysis of different commercial soybean protein isolates. Journal of Agricultural and Food Chemistry, 46(8), 3009-3015. Herbert, P., Barros, P., Ratola, N., & Alves, A. (2000). HPLC determination of amino acids in musts and port wine using OPA/FMOC derivatives. Journal of Food Science, 65(7), 1130-1133. Hoffman, J. R., & Falvo, M. J. (2004). Protein–which is best?. Journal of Sports Science & Medicine, 3(3), 118. Hughes, G. J., Ryan, D. J., Mukherjea, R., & Schasteen, C. S. (2011). Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: criteria for evaluation. Journal of Agricultural and Food Chemistry, 59(23), 12707-12712. Instructions of Fluoraldehyde™ o-Phthalaldehyde Crystals. Thermo Scientific 26015, Available online: https://tools.thermofisher.com/content/sfs/manuals/MAN0011312_Fluoraldehyde_oPhthalaldehyde_Crystal_UG.pdf Isolauri, E., Salminen, S., & Ouwehand, A. C. (2004). Probiotics. Best Practice & Research Clinical Gastroenterology, 18(2), 299-313. Jäger, R., Purpura, M., Farmer, S., Cash, H. A., & Keller, D. (2018). Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization. Probiotics and Antimicrobial Proteins, 10(4), 611-615. Jäger, R., Zaragoza, J., Purpura, M., Iametti, S., Marengo, M., Tinsley, G. M., Anzalone, A. J., Oliver, J. M., Fiore, W., Biffi, A., Urbina, S., & Taylor, L. (2020). Probiotic administration increases amino acid absorption from plant protein: a placebo-controlled, randomized, double-blind, multicenter, crossover study. Probiotics and Antimicrobial Proteins, 12, 1330-1339. Jeon, H. J., Kim, H., Lee, M., Moon, J., Kim, J., Yang, J., & Jung, Y. H. (2023). Oral administration of animal and plant protein mixture with Lactiplantibacillus plantarum IDCC 3501 improves protein digestibility. Fermentation, 9(6), 560. Kandler, O., & Waiss, N. (1986). In Bergey’s manual of systematic bacteriology, vol. 2, Garrity, G.M. Ed., Williams, J.G. and Wilkins Co.: Baltimore, Md, pp. 1209–1234. Keller, D., Van Dinter, R., Cash, H., Farmer, S., & Venema, K. (2017). Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1). Beneficial Microbes, 8(3), 491-496. Kim, H., Kim, J., Lee, M., Jeon, H. J., Moon, J. S., Jung, Y. H., & Yang, J. (2023). Increased amino acid absorption mediated by Lacticaseibacillus Rhamnosus IDCC 3201 in high-protein diet-fed mice. Journal of Microbiology and Biotechnology, 33(4), 511. Kimball, S. R., & Jefferson, L. S. (2002). Control of protein synthesis by amino acid availability. Current Opinion in Clinical Nutrition & Metabolic Care, 5(1), 63-67. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M., Fiers, M. W. E. J., Stiekema, W., Lankhorst, R. M. K., Bron, P. A., Hoffer, S. M., Groot, M. N. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences, 100(4), 1990-1995. Komatsu, Y., Tsuda, M., Wada, Y., Shibasaki, T., Nakamura, H., & Miyaji, K. (2023). Nutritional evaluation of milk-, plant-, and insect-based protein materials by protein digestibility using the INFOGEST digestion method. Journal of Agricultural and Food Chemistry, 71(5), 2503-2513. Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science, 147(3659), 747-748. Liu, E., Zheng, H., Hao, P., Konno, T., Yu, Y., Kume, H., Oda, M., & Ji, Z. S. (2012). A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey. Current Microbiology, 65, 742-751. Liu, S. H., Chu, H. I., Wang, S. H., & Chung, H. L. (1931). Nutritional edema. I. Effect of level and quality of protein intake on nitrogen balance, plasma proteins and edema. Proceedings of the Society for Experimental Biology and Medicine, 29(3), 250-252. Liu, Y., Tian, X., Daniel, R. C., Okeugo, B., Armbrister, S. A., Luo, M., Taylor, C. M., Wu, G., & Rhoads, J. M. (2022). Impact of probiotic Limosilactobacillus reuteri DSM 17938 on amino acid metabolism in the healthy newborn mouse. Amino Acids, 54(10), 1383-1401. Lynch, H., Johnston, C., & Wharton, C. (2018). Plant-based diets: considerations for environmental impact, protein quality, and exercise performance. Nutrients, 10(12), 1841. Macnicol, P. K. (1977). Synthesis and interconversion of amino acids in developing cotyledons of pea (Pisum sativum L.). Plant Physiology, 60(3), 344-348. Markowiak-Kopeć, P., & Śliżewska, K. (2020). The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients, 12(4), 1107. Marteau, P. R., de Vrese, M., Cellier, C. J., & Schrezenmeir, J. (2001). Protection from gastrointestinal diseases with the use of probiotics. The American Journal of Clinical Nutrition, 73(2), 430s-436s. Marttinen, M., Anjum, M., Saarinen, M. T., Ahonen, I., Lehtinen, M. J., Nurminen, P., & Laitila, A. (2023). Enhancing bioaccessibility of plant protein using probiotics: an in vitro study. Nutrients, 15(18), 3905. McDonald, P., Henderson, A.R., & Heros, S. J. E. (1991). Microorganisms: in the biochemistry of silage, 2nd ed. Chalocombe Publication. Marlow, Bucks: Shedfield, UK, p.81. Metchnikoff E. (1908). The prolongation of life. Optimistic studies New York, Putman’s Sons, p.161-83. Millette, M., Nguyen, A., Amine, K. M., & Lacroix, M. (2013). Gastrointestinal survival of bacteria in commercial probiotic products. International Journal of Probiotics & Prebiotics, 8(4), 149. Morgan, H. E., Earl, D. C. N., Broadus, A., Wolpert, E. B., Giger, K. E., & Jefferson, L. S. (1971). Regulation of protein synthesis in heart muscle: I. Effect of amino acid levels on protein synthesis. Journal of Biological Chemistry, 246(7), 2152-2162. Parker, R. B. (1974). Probiotics, the other half of the antibiotics story. Animal Nutrition Health, 29, 4-8. Perucho, J., Gonzalo-Gobernado, R., Bazan, E., Casarejos, M. J., Jiménez-Escrig, A., Asensio, M. J., & Herranz, A. S. (2015). Optimal excitation and emission wavelengths to analyze amino acids and optimize neurotransmitters quantification using precolumn OPA-derivatization by HPLC. Amino Acids, 47, 963-973. Petretto, D. R., & Roberto, P. (2021). Longevity, lifestyles and eating: The importance of education. UnicaPress. Phillips, S. M. (2016). The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutrition & Metabolism, 13, 1-9. Prete, R., Long, S. L., Gallardo, A. L., Gahan, C. G., Corsetti, A., & Joyce, S. A. (2020). Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Scientific Reports, 10(1), 1165. Raja, R., Lim, A. V., Lim, Y. P., Lim, G., Chan, S. P., & Vu, C. K. F. (2004). Malnutrition screening in hospitalised patients and its implication on reimbursement. Internal Medicine Journal, 34(4), 176-181. Reid, G. (2016). Probiotics: definition, scope and mechanisms of action. Best Practice & Research Clinical Gastroenterology, 30(1), 17-25. Salminen, S., Isolauri, E., & Salminen, E. (1996). Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek, 70, 347-358. Salminen, S., von Wright, A., Morelli, L., Marteau, P., Brassart, D., de Vos, W. M., Fondén, R., Saxelin, M., Collins, K., Mogensen, G., Birkeland, S. E., & Mattila-Sandholm, T. (1998). Demonstration of safety of probiotics—a review. International Journal of Food Microbiology, 44(1-2), 93-106. Savijoki, K., Ingmer, H., & Varmanen, P. (2006). Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology, 71, 394-406. Scheirlinck, T., De Meutter, J., Arnaut, G., Joos, H., Claeyssens, M., & Michiels, F. (1990). Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum. Applied Microbiology and Biotechnology, 33, 534-541. Schönfeldt, H. C., & Hall, N. G. (2012). Dietary protein quality and malnutrition in Africa. British Journal of Nutrition, 108(S2), S69-S76. Scortichini, S., Boarelli, M. C., Silvi, S., & Fiorini, D. (2020). Development and validation of a GC-FID method for the analysis of short chain fatty acids in rat and human faeces and in fermentation fluids. Journal of Chromatography B, 1143, 121972. Setchell, K. D., Rodrigues, C. M., Clerici, C., Solinas, A., Morelli, A., Gartung, C., & Boyer, J. (1997). Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Gastroenterology, 112(1), 226-235. Sharafi, H., Maleki, H., Ahmadian, G., Zahiri, H. S., Sajedinejad, N., Houshmand, B., Vali, H., & Noghabi, K. A. (2013). Antibacterial activity and probiotic potential of Lactobacillus plantarum HKN01: a new insight into the morphological changes of antibacterial compound-treated Escherichia coli by electron microscopy. Journal of Microbiology and Biotechnology, 23(2), 225-236. Singh, U. P., Tyagi, P., & Upreti, S. (2007). Manganese complexes as models for manganese-containing pseudocatalase enzymes: Synthesis, structural and catalytic activity studies. Polyhedron, 26(14), 3625-3632. Soccol, C. R., Vandenberghe, L. P. S., Spier, M. R., Medeiros, A. B. P., Yamaguishi, C. T., Lindner, J. D. D., Pandey, A., & Thomaz-Soccol, V. (2010). The potential of probiotics: a review. Food Technology and Biotechnology, 48(4), 413–434 Solval, K. M., Chouljenko, A., Chotiko, A., & Sathivel, S. (2019). Growth kinetics and lactic acid production of Lactobacillus plantarum NRRL B-4496, L. acidophilus NRRL B-4495, and L. reuteri B-14171 in media containing egg white hydrolysates. Food Science & Technology, 105, 393-399. Stasiak-Różańska, L., Berthold-Pluta, A., Pluta, A. S., Dasiewicz, K., & Garbowska, M. (2021). Effect of simulated gastrointestinal tract conditions on survivability of probiotic bacteria present in commercial preparations. International Journal of Environmental Research and Public Health, 18(3), 1108. Tanasupawat, S., Ezaki, T., Suzuki, K. I., Okada, S., Komagata, K., & Kozaki, M. (1992). Characterization and identification of Lactobacillus pentosus and Lactobacillus plantarum strains from fermented foods in Thailand. The Journal of General and Applied Microbiology, 38(2), 121-134. Thananimit, S., Pahumunto, N., & Teanpaisan, R. (2022). Characterization of short chain fatty acids produced by selected potential probiotic lactobacillus strains. Biomolecules, 12(12), 1829. Todorov, S. D., & Franco, B. D. G. D. M. (2010). Lactobacillus plantarum: characterization of the species and application in food production. Food Reviews International, 26(3), 205-229. Vandenplas, Y., Greef, E. D., & Veereman, G. (2014). Prebiotics in infant formula. Gut Microbes, 5(6), 681-687. Walden, K. E., Hagele, A. M., Orr, L. S., Gross, K. N., Krieger, J. M., Jäger, R., & Kerksick, C. M. (2024). Probiotic BC30 improves amino acid absorption from plant protein concentrate in older women. Probiotics and Antimicrobial Proteins, 16(1), 125-137. Wang, F., Wan, Y., Yin, K., Wei, Y., Wang, B., Yu, X., Ni, Y., Zheng, J., Huang, T., Song, M., & Li, D. (2019). Lower circulating branched‐chain amino acid concentrations among vegetarians are associated with changes in gut microbial composition and function. Molecular Nutrition & Food Research, 63(24), 1900612. Wang, G., Yu, H., Feng, X., Tang, H., Xiong, Z., Xia, Y., Ai, L., & Song, X. (2021). Specific bile salt hydrolase genes in Lactobacillus plantarum AR113 and relationship with bile salt resistance. Food Science & Technology, 145, 111208. Wang, J., & Ji, H. (2019). Influence of probiotics on dietary protein digestion and utilization in the gastrointestinal tract. Current Protein and Peptide Science, 20(2), 125-131. Wang, L., Zhang, J., Guo, Z., Kwok, L., Ma, C., Zhang, W., Lv, Q., Huang, W., & Zhang, H. (2014). Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition, 30(7-8), 776-783. Wathanavasin, W., Kittiskulnam, P., & Johansen, K. L. (2024). Plant-based diets in patients with chronic kidney disease. Asian Biomedicine, 18(1), 2-10. Woyengo, T. A., Heo, J. M., Yin, Y. L., & Nyachoti, C. M. (2015). Standardized and true ileal amino acid digestibilities in field pea and pea protein isolate fed to growing pigs. Animal Feed Science and Technology, 207, 196-203. Wu, Q., Kan, J., Cui, Z., Ma, Y., Liu, X., Dong, R., Huang, D., Chen, L., Du, J., & Fu, C. (2024). Understanding the nutritional benefits through plant proteins-probiotics interactions: mechanisms, challenges, and perspectives. Critical Reviews in Food Science and Nutrition, 1-19. Yakubu, C. M., Sharma, R., Sharma, S., & Singh, B. (2022). Influence of alkaline fermentation time on in vitro nutrient digestibility, bio-& techno-functionality, secondary protein structure and macromolecular morphology of locust bean (Parkia biglobosa) flour. Food Science & Technology, 161, 113295. Yi, R., Pan, Y., Long, X., Tan, F., & Zhao, X. (2020). Enzyme producing activity of probiotics and preparation of compound enzyme. Journal of Chemistry, 2020(1), 9140281. Żebrowska, E., Maciejczyk, M., Żendzian-Piotrowska, M., Zalewska, A., & Chabowski, A. (2019). High protein diet induces oxidative stress in rat cerebral cortex and hypothalamus. International Journal of Molecular Sciences, 20(7), 1547. Zeng, M., Adhikari, B., He, Z., Qin, F., Huang, X., & Chen, J. (2013). Improving the foaming properties of soy protein isolate through partial enzymatic hydrolysis. Drying Technology, 31(13-14), 1545-1552. Zhang, C., Liu, A., Zhang, T., Li, Y., & Zhao, H. (2020). Gas chromatography detection protocol of short-chain fatty acids in mice feces. Bio-protocol, 10(13), e3672-e3672.
|