跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/04 04:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉德愷
研究生(外文):Der-Kai Lau
論文名稱:探討不同植物乳桿菌對植物性蛋白質消化與吸收的影響
論文名稱(外文):Effects of different Lactobacillus plantarum strains on Plant Protein Digestion and Absorption
指導教授:周志輝
指導教授(外文):Chi-Fai Chau
口試委員:吳宗諺吳炫慧
口試日期:2024-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:101
中文關鍵詞:益生菌植物乳桿菌蛋白質胺基酸水解吸收
外文關鍵詞:probioticsLactobacillus plantarumproteinamino acidshydrolysisabsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
許多人爲了顧及體態、健康、環保等因素轉而增加食用素食飲食,使得素食飲食被掀起一股熱潮。長期的素食飲食面對的一大問題便是蛋白質不足,原因主要有二,一是植物蛋白胺基酸組成不完全,二是植物蛋白較難消化吸收。對此,益生菌的添加便成爲解決的辦法之一。本研究將以特性分析實驗、體外培養實驗和體内動物實驗等多個角度,探討植物乳桿菌Lactobacillus plantarum-1 (Lp1)與Lactobacillus plantarum-2 (Lp2)在生物體内促進植物蛋白水解並促進胺基酸吸收的能力。
在特性分析實驗中,益生菌Lp1無論是生長或代謝能力、耐受酵素性和耐膽鹽性皆略優於Lp2。於體外實驗,可觀察到Lp1及Lp2對大豆水解蛋白(SPI)與豌豆水解蛋白(PPI)皆具備基本的水解能力。但深入探討時,發現同樣是培養4小時後,與控制組相比,益生菌Lp1能顯著(p < 0.05)提高SPI中13種胺基酸的濃度,而Lp2只能提高(p < 0.05) 6種胺基酸的濃度。將益生菌與PPI共同培養4小時後,Lp1顯著(p < 0.05)提高PPI中6種胺基酸的濃度,Lp2僅對3種胺基酸的濃度有提升(p < 0.05)效果。由此初步判斷Lp1對植物蛋白之水解能力凌駕於Lp2之上。
在短期動物飼養模式中,大鼠在同時攝食含有1 mL濃度為Log 9 CFU/mL的益生菌與高蛋白飲食,益生菌Lp1可提高實驗動物血液必需胺基酸(EAA)濃度約82%,而Lp2只能提高約69.4%。在長期的動物飼養模式下,給予動物1 ml濃度為Log 7 CFU/mL和1 ml濃度為Log 9 CFU/mL兩種劑量的益生菌,觀察大鼠在不同飲食下長期攝取益生菌對其血液中胺基酸濃度的影響。結果顯示無論是Chow diet (CD)或高蛋白飲食組(HPD),攝取低劑量益生菌Lp1或Lp2對胺基酸的影響主要為非必需胺基酸,而高劑量的Lp1或Lp2 則能顯著(p < 0.05)增加EAA的濃度。
綜合以上結果,益生菌Lp1不論是在特性還是在功效上皆展現出較佳的結果。兩株益生菌對蛋白質都具備一定的水解效果,而經過益生菌的代謝後,Lp1能較為有效的促進較多胺基酸在濃度上的提升。透過動物實驗,發現兩株菌在高劑量下有助餐後血液中EAA濃度的提高,但相比之下,Lp1比Lp2為血液EAA濃度帶來更明顯的提升效果,基於植物蛋白並非完全蛋白質,常見會有一至二種必需胺基酸含量略低,綜合考量下,將植物蛋白搭配益生菌Lp1同時食用有助改善植物蛋白的營養價值。
Many people have started adopting a vegetarian diet due to factors like maintaining body shape, health benefits, and environmental considerations, leading to a surge in the popularity of vegetarianism. A major challenge faced by long-term vegetarian diets is the lack of sufficient protein, mainly due to two reasons: the incomplete amino acid composition of plant proteins and the difficulty in digesting and absorbing plant proteins. To address this issue, the addition of probiotics has become one of the solutions. This study aims to investigate the ability of Lactobacillus plantarum-1 (Lp1) and Lactobacillus plantarum-2 (Lp2) to promote the hydrolysis of plant proteins and the absorption of amino acids in the body from various perspectives, including characteristic analysis experiments, in vitro culture experiments, and in vivo animal experiments.
In the characteristic analysis experiments, Lp1 demonstrated slightly superior growth or metabolic capacity, enzyme tolerance, and bile salt tolerance compared to Lp2. In the in vitro experiments, both Lp1 and Lp2 exhibited basic hydrolysis ability on soy protein isolate (SPI) and pea protein isolate (PPI). However, upon further investigation, it was found that after 4 hours of cultivation, Lp1 significantly (p < 0.05) increased the concentration of 13 amino acids in SPI compared to the control group, while Lp2 only increased the concentration of 6 amino acids (p < 0.05). After 4 hours of co-culturing probiotics with PPI, Lp1 significantly (p < 0.05) increased the concentration of 6 amino acids in PPI, whereas Lp2 only improved the concentration of 3 amino acids (p < 0.05). From this preliminary assessment, it was determined that Lp1 has a superior hydrolysis ability on plant proteins compared to Lp2.
In the short-term animal feeding model, rats were fed a high-protein diet with 1 mL of probiotics at a concentration of Log 9 CFU/mL. Probiotic Lp1 increased the concentration of essential amino acids (EAA) in the blood of experimental animals by approximately 82%, while Lp2 increased it by about 69.4%. In the long-term animal feeding model, animals were given two doses of probiotics: 1 mL at a concentration of Log 7 CFU/mL and 1 mL at a concentration of Log 9 CFU/mL. The effect of long-term probiotic intake on amino acid concentration in the blood of rats under different diets was observed. The results showed that whether under a Chow diet (CD) or high-protein diet (HPD), the intake of low-dose probiotics Lp1 or Lp2 primarily affected non-essential amino acids. However, high-dose Lp1 or Lp2 significantly (p < 0.05) increased the concentration of EAAs.
In summary, probiotic Lp1 showed better results both in characteristics and efficacy. Both probiotics demonstrated a certain degree of protein hydrolysis effect, and after probiotic metabolism, Lp1 was more effective in promoting the increase in the concentration of more amino acids. Through animal experiments, it was found that both strains at high doses contributed to the rise in postprandial blood EAA concentration. However, Lp1 showed a more significant effect on increasing blood EAA concentration than Lp2. Given that plant proteins are not complete proteins and usually have one or two essential amino acids in slightly lower quantities, it is concluded that consuming plant proteins with probiotic Lp1 can help improve the nutritional value of plant proteins.
摘要 i
Abstract iii
目錄 v
表次 ix
圖次 xi
1. 前言 1
1.1 益生菌 1
1.1.1 定義及歷史 1
1.1.2 益生菌對腸道的健康效益 2
1.1.3 益生菌的分類 3
1.1.4 植物乳桿菌 5
1.1.5 益生菌分泌的酵素類型 8
1.2 胺基酸的代謝 9
1.2.1 常見胺基酸的代謝路徑 9
1.2.2 胺基酸的相互代謝作用 9
1.2.3 益生菌在胺基酸代謝作用中所扮演的角色 11
1.3 胺基酸於生物體内所扮演的角色 12
1.3.1 血液胺基酸變化之意義 12
1.3.2 蛋白質對人體的重要性 13
1.4 蛋白質營養不良 14
1.4.1 蛋白質營養不良之定義 14
1.4.2 植物性蛋白與蛋白質營養不良 15
1.4.3 益生菌與植物蛋白之間的聯繫 17
2. 研究目的 19
3. 材料與方法 20
3.1 實驗模式 20
3.2 樣品來源 20
3.3 特性分析實驗 22
3.3.1 益生菌之生長曲線與產酸能力 22
3.3.2 益生菌於腸道模擬環境中的存活能力 22
3.3.3 益生菌之耐膽汁鹽能力 25
3.4 體外實驗 27
3.4.1 水解植物蛋白活性 27
3.4.2 植物蛋白水解液混合培養實驗 27
3.4.3 胺基酸相互代謝分析試驗 29
3.5 體内實驗 30
3.5.1 動物飼養 30
3.5.2 短期動物實驗 30
3.5.3 長期動物實驗 31
3.5.3.1 長期動物實驗分組 31
3.5.3.2 飼料與樣品的給予 32
3.6 液相層析系統 36
3.6.1 樣品上清液製備 36
3.6.2 柱前衍生化 36
3.6.3 色譜系統 37
3.6.4 溶劑選擇以及洗脫條件 37
3.7 糞便短鏈脂肪酸萃取與定量 38
3.8 統計分析 40
4. 結果與討論 41
4.1 活性與耐受性檢測試驗 41
4.1.1 生長曲線與產酸能力 41
4.1.2 耐酸、耐酵素試驗 44
4.1.3 耐膽鹽試驗 46
4.2 體外試驗 50
4.2.1 培養基蛋白質水解試驗 50
4.2.2 植物蛋白混合培養試驗 54
4.2.2.1 益生菌Lp1及Lp2水解SPI的潛力評估 55
4.2.2.2 益生菌Lp1及Lp2水解PPI的潛力評估 58
4.2.2.3 Lp1及Lp2對SPI和PPI胺基酸濃度提升程度之比較 62
4.2.3 胺基酸轉換能力分析 62
4.2.3.1 益生菌Lp1及Lp2與NEAAsl溶液共同培養分析 64
4.2.3.2 益生菌Lp1及Lp2與EAAsl溶液共同培養分析 67
4.3 體内實驗 71
4.3.1 大鼠體重、攝食量及飲水量之變化 71
4.3.2 短期動物實驗 72
4.3.3 長期動物實驗 75
4.3.3.1 益生菌Lp1搭配一般飲食對大鼠血清胺基酸的影響 80
4.3.3.2 益生菌Lp1搭配高蛋白飲食對大鼠血清胺基酸的影響 80
4.3.3.3 益生菌Lp2搭配一般飲食對大鼠血清胺基酸的影響 81
4.3.3.4 益生菌Lp2搭配高蛋白飲食對大鼠血清胺基酸的影響 82
4.3.4 大鼠糞便短鏈脂肪酸含量 83
4.3.4.1 益生菌Lp1對大鼠糞便短鏈脂肪酸的影響 88
4.3.4.2 益生菌Lp2對大鼠糞便短鏈脂肪酸的影響 88
5. 總結 90
6. 參考文獻 92
Atakisi, O., Atakisi, E., & Kart, A. (2009). Effects of dietary zinc and l-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitric oxide, egg weight, and blood biochemical values in Japanase quails. Biological Trace Element Research, 132, 136-143.
Babu, S. S., Shareef, M. M., Shetty, A. P. K., & Shetty, K. T. (2002). HPLC method for amino acids profile in biological fluids and inborn metabolic disorders of aminoacidopathies. Indian Journal of Clinical Biochemistry, 17, 7-26.
Batool, R., Butt, M. S., Sultan, M. T., Saeed, F., & Naz, R. (2015). Protein–energy malnutrition: A risk factor for various ailments. Critical Reviews in Food Science and Nutrition, 55(2), 242-253.
Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61(2), 160-174.
Bohé, J., Low, J. A., Wolfe, R. R., & Rennie, M. J. (2001). Rapid report: latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. The Journal of physiology, 532(2), 575-579.
Brinkworth, G. D., Noakes, M., Clifton, P. M., & Bird, A. R. (2009). Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. British Journal of Nutrition, 101(10), 1493-1502.
Brosnan, M. E., & Brosnan, J. T. (2020). Histidine metabolism and function. The Journal of Nutrition, 150, 2570S-2575S.
Butel, M. J., & Waligora‐Dupriet, A. J. (2016). Probiotics and prebiotics: what are they and what can they do for us?. The Human Microbiota and Chronic Disease: Dysbiosis as a Cause of Human Pathology, 467-481.
Charteris, W. P., Kelly, P. M., Morelli, L., & Collins, J. K. (1997). Selective detection, enumeration and identification of potentially probiotic Lactobacillus and Bifidobacterium species in mixed bacterial populations. International Journal of Food Microbiology, 35(1), 1-27.
Corzo, A., Moran Jr, E. T., & Hoehler, D. (2003). Arginine need of heavy broiler males: Applying the ideal protein concept. Poultry Science, 82(3), 402-407.
da Rosa Lima, T., Ávila, E. T. P., Fraga, G. A., de Souza Sena, M., de Souza Dias, A. B., de Almeida, P. C., dos Santos Trombeta, J. C., d Junior, R. C. V., Damazo, A. S., Navalta, J. W., Prestes, J., & Voltarelli, F. A. (2018). Effect of administration of high-protein diet in rats submitted to resistance training. European Journal of Nutrition, 57, 1083-1096.
Daeschel, M. A., Andersson, R. E., & Fleming, H. P. (1987). Microbial ecology of fermenting plant materials. FEMS Microbiology Reviews, 3(3), 357-367.
FAO, WHO. (2013). Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation. FAO Food Nutrition Paper 92, 1–66
FAO/WHO Working Group. (2002). Guidelines for the evaluation of probiotics in food. London, Available online: https://openknowledge.fao.org/server/api/core/bitstreams/382476b3-4d54-4175-803f-2f26f3526256/content
Foo, H. L., Loh, T. C., Lai, P. W., Lim, Y. Z., Kufli, C. N., & Rusul, G. (2003). Effects of adding Lactobacillus plantarum I-UL4 metabolites in drinking water of rats. Pakistan Journal of Nutrition, 2(5), 283-8.
Food and Agriculture Organization (FAO). (2008). FAOSTAT database, Available online: http://faostat3.fao.org.
Food and Agriculture Organization/World Health Organization (FAO/WHO). (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria, Córdoba, Argentina, Available online: http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf.
Friedman, A. N. (2004). High-protein diets: potential effects on the kidney in renal health and disease. American Journal of Kidney Diseases, 44(6), 950-962.
Galili, G., Amir, R., & Fernie, A. R. (2016). The regulation of essential amino acid synthesis and accumulation in plants. Annual Review of Plant Biology, 67(1), 153-178.
Gomes, A. M., & Malcata, F. X. (1999). Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends in Food Science & Technology, 10(4-5), 139-157.
Gonzalez, J. M., & Aranda, B. (2023). Microbial growth under limiting conditions-future perspectives. Microorganisms, 11(7), 1641.
Guarner, F., Khan, A. G., Garisch, J., Eliakim, R., Gangl, A., Thomson, A., Krabshuis, J., Lemair, T., Kaufmann, P., de Paula, J. A., Fedorak, R., Shanahan, F., Sanders, M. E., Szajewska, H., Ramakrishna, B. S., Karakan, T., & Kim, N. (2012). World gastroenterology organisation global guidelines: probiotics and prebiotics october 2011. Journal of Clinical Gastroenterology, 46(6), 468-481.
Guedon, E., Sperandio, B., Pons, N., Ehrlich, S. D., & Renault, P. (2005). Overall control of nitrogen metabolism in Lactococcus lactis by CodY, and possible models for CodY regulation in Firmicutes. Microbiology, 151(12), 3895-3909.
Gupta, V., & Garg, R. (2009). Probiotics. Indian Journal of Medical Microbiology, 27(3), 202-209.
Hammes, W. P., & Vogel, R. F. (1995). The Genus Lactobacillus. In: The Lactic Acid Bacteria, Vol. 2, B.J.B. Wood, W.H. Holzapfel (Eds.), Chapman and Hall, London, UK, pp. 19–54.
Henn, R. L., & Netto, F. M. (1998). Biochemical characterization and enzymatic hydrolysis of different commercial soybean protein isolates. Journal of Agricultural and Food Chemistry, 46(8), 3009-3015.
Herbert, P., Barros, P., Ratola, N., & Alves, A. (2000). HPLC determination of amino acids in musts and port wine using OPA/FMOC derivatives. Journal of Food Science, 65(7), 1130-1133.
Hoffman, J. R., & Falvo, M. J. (2004). Protein–which is best?. Journal of Sports Science & Medicine, 3(3), 118.
Hughes, G. J., Ryan, D. J., Mukherjea, R., & Schasteen, C. S. (2011). Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: criteria for evaluation. Journal of Agricultural and Food Chemistry, 59(23), 12707-12712.
Instructions of Fluoraldehyde™ o-Phthalaldehyde Crystals. Thermo Scientific 26015, Available online: https://tools.thermofisher.com/content/sfs/manuals/MAN0011312_Fluoraldehyde_oPhthalaldehyde_Crystal_UG.pdf
Isolauri, E., Salminen, S., & Ouwehand, A. C. (2004). Probiotics. Best Practice & Research Clinical Gastroenterology, 18(2), 299-313.
Jäger, R., Purpura, M., Farmer, S., Cash, H. A., & Keller, D. (2018). Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization. Probiotics and Antimicrobial Proteins, 10(4), 611-615.
Jäger, R., Zaragoza, J., Purpura, M., Iametti, S., Marengo, M., Tinsley, G. M., Anzalone, A. J., Oliver, J. M., Fiore, W., Biffi, A., Urbina, S., & Taylor, L. (2020). Probiotic administration increases amino acid absorption from plant protein: a placebo-controlled, randomized, double-blind, multicenter, crossover study. Probiotics and Antimicrobial Proteins, 12, 1330-1339.
Jeon, H. J., Kim, H., Lee, M., Moon, J., Kim, J., Yang, J., & Jung, Y. H. (2023). Oral administration of animal and plant protein mixture with Lactiplantibacillus plantarum IDCC 3501 improves protein digestibility. Fermentation, 9(6), 560.
Kandler, O., & Waiss, N. (1986). In Bergey’s manual of systematic bacteriology, vol. 2, Garrity, G.M. Ed., Williams, J.G. and Wilkins Co.: Baltimore, Md, pp. 1209–1234.
Keller, D., Van Dinter, R., Cash, H., Farmer, S., & Venema, K. (2017). Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1). Beneficial Microbes, 8(3), 491-496.
Kim, H., Kim, J., Lee, M., Jeon, H. J., Moon, J. S., Jung, Y. H., & Yang, J. (2023). Increased amino acid absorption mediated by Lacticaseibacillus Rhamnosus IDCC 3201 in high-protein diet-fed mice. Journal of Microbiology and Biotechnology, 33(4), 511.
Kimball, S. R., & Jefferson, L. S. (2002). Control of protein synthesis by amino acid availability. Current Opinion in Clinical Nutrition & Metabolic Care, 5(1), 63-67.
Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M., Fiers, M. W. E. J., Stiekema, W., Lankhorst, R. M. K., Bron, P. A., Hoffer, S. M., Groot, M. N. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences, 100(4), 1990-1995.
Komatsu, Y., Tsuda, M., Wada, Y., Shibasaki, T., Nakamura, H., & Miyaji, K. (2023). Nutritional evaluation of milk-, plant-, and insect-based protein materials by protein digestibility using the INFOGEST digestion method. Journal of Agricultural and Food Chemistry, 71(5), 2503-2513.
Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science, 147(3659), 747-748.
Liu, E., Zheng, H., Hao, P., Konno, T., Yu, Y., Kume, H., Oda, M., & Ji, Z. S. (2012). A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey. Current Microbiology, 65, 742-751.
Liu, S. H., Chu, H. I., Wang, S. H., & Chung, H. L. (1931). Nutritional edema. I. Effect of level and quality of protein intake on nitrogen balance, plasma proteins and edema. Proceedings of the Society for Experimental Biology and Medicine, 29(3), 250-252.
Liu, Y., Tian, X., Daniel, R. C., Okeugo, B., Armbrister, S. A., Luo, M., Taylor, C. M., Wu, G., & Rhoads, J. M. (2022). Impact of probiotic Limosilactobacillus reuteri DSM 17938 on amino acid metabolism in the healthy newborn mouse. Amino Acids, 54(10), 1383-1401.
Lynch, H., Johnston, C., & Wharton, C. (2018). Plant-based diets: considerations for environmental impact, protein quality, and exercise performance. Nutrients, 10(12), 1841.
Macnicol, P. K. (1977). Synthesis and interconversion of amino acids in developing cotyledons of pea (Pisum sativum L.). Plant Physiology, 60(3), 344-348.
Markowiak-Kopeć, P., & Śliżewska, K. (2020). The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients, 12(4), 1107.
Marteau, P. R., de Vrese, M., Cellier, C. J., & Schrezenmeir, J. (2001). Protection from gastrointestinal diseases with the use of probiotics. The American Journal of Clinical Nutrition, 73(2), 430s-436s.
Marttinen, M., Anjum, M., Saarinen, M. T., Ahonen, I., Lehtinen, M. J., Nurminen, P., & Laitila, A. (2023). Enhancing bioaccessibility of plant protein using probiotics: an in vitro study. Nutrients, 15(18), 3905.
McDonald, P., Henderson, A.R., & Heros, S. J. E. (1991). Microorganisms: in the biochemistry of silage, 2nd ed. Chalocombe Publication. Marlow, Bucks: Shedfield, UK, p.81.
Metchnikoff E. (1908). The prolongation of life. Optimistic studies New York, Putman’s Sons, p.161-83.
Millette, M., Nguyen, A., Amine, K. M., & Lacroix, M. (2013). Gastrointestinal survival of bacteria in commercial probiotic products. International Journal of Probiotics & Prebiotics, 8(4), 149.
Morgan, H. E., Earl, D. C. N., Broadus, A., Wolpert, E. B., Giger, K. E., & Jefferson, L. S. (1971). Regulation of protein synthesis in heart muscle: I. Effect of amino acid levels on protein synthesis. Journal of Biological Chemistry, 246(7), 2152-2162.
Parker, R. B. (1974). Probiotics, the other half of the antibiotics story. Animal Nutrition Health, 29, 4-8.
Perucho, J., Gonzalo-Gobernado, R., Bazan, E., Casarejos, M. J., Jiménez-Escrig, A., Asensio, M. J., & Herranz, A. S. (2015). Optimal excitation and emission wavelengths to analyze amino acids and optimize neurotransmitters quantification using precolumn OPA-derivatization by HPLC. Amino Acids, 47, 963-973.
Petretto, D. R., & Roberto, P. (2021). Longevity, lifestyles and eating: The importance of education. UnicaPress.
Phillips, S. M. (2016). The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutrition & Metabolism, 13, 1-9.
Prete, R., Long, S. L., Gallardo, A. L., Gahan, C. G., Corsetti, A., & Joyce, S. A. (2020). Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Scientific Reports, 10(1), 1165.
Raja, R., Lim, A. V., Lim, Y. P., Lim, G., Chan, S. P., & Vu, C. K. F. (2004). Malnutrition screening in hospitalised patients and its implication on reimbursement. Internal Medicine Journal, 34(4), 176-181.
Reid, G. (2016). Probiotics: definition, scope and mechanisms of action. Best Practice & Research Clinical Gastroenterology, 30(1), 17-25.
Salminen, S., Isolauri, E., & Salminen, E. (1996). Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek, 70, 347-358.
Salminen, S., von Wright, A., Morelli, L., Marteau, P., Brassart, D., de Vos, W. M., Fondén, R., Saxelin, M., Collins, K., Mogensen, G., Birkeland, S. E., & Mattila-Sandholm, T. (1998). Demonstration of safety of probiotics—a review. International Journal of Food Microbiology, 44(1-2), 93-106.
Savijoki, K., Ingmer, H., & Varmanen, P. (2006). Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology, 71, 394-406.
Scheirlinck, T., De Meutter, J., Arnaut, G., Joos, H., Claeyssens, M., & Michiels, F. (1990). Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum. Applied Microbiology and Biotechnology, 33, 534-541.
Schönfeldt, H. C., & Hall, N. G. (2012). Dietary protein quality and malnutrition in Africa. British Journal of Nutrition, 108(S2), S69-S76.
Scortichini, S., Boarelli, M. C., Silvi, S., & Fiorini, D. (2020). Development and validation of a GC-FID method for the analysis of short chain fatty acids in rat and human faeces and in fermentation fluids. Journal of Chromatography B, 1143, 121972.
Setchell, K. D., Rodrigues, C. M., Clerici, C., Solinas, A., Morelli, A., Gartung, C., & Boyer, J. (1997). Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Gastroenterology, 112(1), 226-235.
Sharafi, H., Maleki, H., Ahmadian, G., Zahiri, H. S., Sajedinejad, N., Houshmand, B., Vali, H., & Noghabi, K. A. (2013). Antibacterial activity and probiotic potential of Lactobacillus plantarum HKN01: a new insight into the morphological changes of antibacterial compound-treated Escherichia coli by electron microscopy. Journal of Microbiology and Biotechnology, 23(2), 225-236.
Singh, U. P., Tyagi, P., & Upreti, S. (2007). Manganese complexes as models for manganese-containing pseudocatalase enzymes: Synthesis, structural and catalytic activity studies. Polyhedron, 26(14), 3625-3632.
Soccol, C. R., Vandenberghe, L. P. S., Spier, M. R., Medeiros, A. B. P., Yamaguishi, C. T., Lindner, J. D. D., Pandey, A., & Thomaz-Soccol, V. (2010). The potential of probiotics: a review. Food Technology and Biotechnology, 48(4), 413–434
Solval, K. M., Chouljenko, A., Chotiko, A., & Sathivel, S. (2019). Growth kinetics and lactic acid production of Lactobacillus plantarum NRRL B-4496, L. acidophilus NRRL B-4495, and L. reuteri B-14171 in media containing egg white hydrolysates. Food Science & Technology, 105, 393-399.
Stasiak-Różańska, L., Berthold-Pluta, A., Pluta, A. S., Dasiewicz, K., & Garbowska, M. (2021). Effect of simulated gastrointestinal tract conditions on survivability of probiotic bacteria present in commercial preparations. International Journal of Environmental Research and Public Health, 18(3), 1108.
Tanasupawat, S., Ezaki, T., Suzuki, K. I., Okada, S., Komagata, K., & Kozaki, M. (1992). Characterization and identification of Lactobacillus pentosus and Lactobacillus plantarum strains from fermented foods in Thailand. The Journal of General and Applied Microbiology, 38(2), 121-134.
Thananimit, S., Pahumunto, N., & Teanpaisan, R. (2022). Characterization of short chain fatty acids produced by selected potential probiotic lactobacillus strains. Biomolecules, 12(12), 1829.
Todorov, S. D., & Franco, B. D. G. D. M. (2010). Lactobacillus plantarum: characterization of the species and application in food production. Food Reviews International, 26(3), 205-229.
Vandenplas, Y., Greef, E. D., & Veereman, G. (2014). Prebiotics in infant formula. Gut Microbes, 5(6), 681-687.
Walden, K. E., Hagele, A. M., Orr, L. S., Gross, K. N., Krieger, J. M., Jäger, R., & Kerksick, C. M. (2024). Probiotic BC30 improves amino acid absorption from plant protein concentrate in older women. Probiotics and Antimicrobial Proteins, 16(1), 125-137.
Wang, F., Wan, Y., Yin, K., Wei, Y., Wang, B., Yu, X., Ni, Y., Zheng, J., Huang, T., Song, M., & Li, D. (2019). Lower circulating branched‐chain amino acid concentrations among vegetarians are associated with changes in gut microbial composition and function. Molecular Nutrition & Food Research, 63(24), 1900612.
Wang, G., Yu, H., Feng, X., Tang, H., Xiong, Z., Xia, Y., Ai, L., & Song, X. (2021). Specific bile salt hydrolase genes in Lactobacillus plantarum AR113 and relationship with bile salt resistance. Food Science & Technology, 145, 111208.
Wang, J., & Ji, H. (2019). Influence of probiotics on dietary protein digestion and utilization in the gastrointestinal tract. Current Protein and Peptide Science, 20(2), 125-131.
Wang, L., Zhang, J., Guo, Z., Kwok, L., Ma, C., Zhang, W., Lv, Q., Huang, W., & Zhang, H. (2014). Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition, 30(7-8), 776-783.
Wathanavasin, W., Kittiskulnam, P., & Johansen, K. L. (2024). Plant-based diets in patients with chronic kidney disease. Asian Biomedicine, 18(1), 2-10.
Woyengo, T. A., Heo, J. M., Yin, Y. L., & Nyachoti, C. M. (2015). Standardized and true ileal amino acid digestibilities in field pea and pea protein isolate fed to growing pigs. Animal Feed Science and Technology, 207, 196-203.
Wu, Q., Kan, J., Cui, Z., Ma, Y., Liu, X., Dong, R., Huang, D., Chen, L., Du, J., & Fu, C. (2024). Understanding the nutritional benefits through plant proteins-probiotics interactions: mechanisms, challenges, and perspectives. Critical Reviews in Food Science and Nutrition, 1-19.
Yakubu, C. M., Sharma, R., Sharma, S., & Singh, B. (2022). Influence of alkaline fermentation time on in vitro nutrient digestibility, bio-& techno-functionality, secondary protein structure and macromolecular morphology of locust bean (Parkia biglobosa) flour. Food Science & Technology, 161, 113295.
Yi, R., Pan, Y., Long, X., Tan, F., & Zhao, X. (2020). Enzyme producing activity of probiotics and preparation of compound enzyme. Journal of Chemistry, 2020(1), 9140281.
Żebrowska, E., Maciejczyk, M., Żendzian-Piotrowska, M., Zalewska, A., & Chabowski, A. (2019). High protein diet induces oxidative stress in rat cerebral cortex and hypothalamus. International Journal of Molecular Sciences, 20(7), 1547.
Zeng, M., Adhikari, B., He, Z., Qin, F., Huang, X., & Chen, J. (2013). Improving the foaming properties of soy protein isolate through partial enzymatic hydrolysis. Drying Technology, 31(13-14), 1545-1552.
Zhang, C., Liu, A., Zhang, T., Li, Y., & Zhao, H. (2020). Gas chromatography detection protocol of short-chain fatty acids in mice feces. Bio-protocol, 10(13), e3672-e3672.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊