跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 10:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴家縈
研究生(外文):Chia-Ying Lai
論文名稱:鵪鶉卵巢濾泡生長速度與產蛋時間間隔之探討
論文名稱(外文):Study of ovarian follicle growth rate and oviposition interval in quails
指導教授:陳志峰陳志峰引用關係
指導教授(外文):Chih-Feng Chen
口試委員:唐品琦趙清賢
口試委員(外文):Pin-Chi TangChing-Hsien Chao
口試日期:2024-01-02
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:60
中文關鍵詞:日本鵪鶉濾泡產蛋時間間隔
外文關鍵詞:Japanese quailfollicleovulation interval
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
日本鵪鶉具有生長快速、高繁殖力、飼料利用效率高、維護成本低和容易飼養等特點,這些特質使鵪鶉比起其他禽類有許多生產和經濟上的優勢。因此,在發展中國家頗受歡迎。同時,因為鵪鶉性成熟早、孵化期短,鵪鶉作為遺傳及育種的模式動物也非常合適。台灣於民國111年已將鵪鶉列入法定家禽,足以可見其產業的成長潛力,唯目前尚未有對鵪鶉產蛋能力之基礎研究。本研究主旨為分析蛋用及肉用鵪鶉之產蛋能力,同時,在蛋形成部分,分別探討濾泡生長時間及濾泡排卵後在輸卵管內形成蛋的時間,討論長期選拔蛋用及肉用形成的鵪鶉品種,其產蛋特性的差異。試驗中使用商業產蛋用日本鵪鶉與產肉用鵪鶉Golden兩種品系,產蛋記錄自初產至24週齡每日紀錄產蛋數,第14週開始連續三週每日定時餵食脂溶性色素蘇丹紅 (Sudan IV)、蘇丹黑 (Sudan Black),待濾泡染色後計算色環數測定濾泡生長天數及測量蛋重;同時,試驗過程以攝影機全天記錄以記錄每日的產蛋時間。結果顯示,在初產日齡(Age at first egg)方面蛋用鵪鶉平均為42日齡明顯早於肉用鵪鶉的50日齡(P < 0.05),且初產後一週產蛋率迅速達到高峰,產蛋持續性維持較佳,而肉用鵪鶉需較長時間達產蛋高峰,且產蛋持續性不佳。在產蛋週期方面,蛋用鵪鶉平均產蛋週期長度25.1日顯著大於肉用鵪鶉的10.4日(P < 0.05);蛋用鵪鶉最長產蛋週期可達106天而肉用鵪鶉最長產蛋週期為61天,另外停產週期蛋用鵪鶉顯著小於肉用鵪鶉(P < 0.05),至16週齡時蛋用鵪鶉平均產73.5枚蛋平均產蛋率為90.7%,肉用鵪鶉平均產63.6枚平均產蛋率為85.4%。在濾泡生長方面蛋用鵪鶉平均需5.2日,肉用鵪鶉需6.2日,平均濾泡生長肉用鵪鶉顯著多了一天,平均濾泡生長時間蛋用鵪鶉明顯小於肉用鵪鶉(P < 0.05)。蛋鵪鶉每日可累積0.66克卵黃,肉鵪鶉可累積0.68克卵黃,產蛋時間間格蛋鵪鶉為24.07日,肉鵪鶉為24.18日,兩者並無顯著差異,惟蛋鵪鶉的變異數較大。蛋重方面蛋用鵪鶉為10.2克,肉用鵪鶉為13.7克(P < 0.05)。濾泡排卵後在輸卵管中形成蛋白的時間方面兩種鵪鶉則沒有顯著的差異,不過蛋用鵪鶉最低約只需23小時30分即可形成一顆殼蛋,而肉用鵪鶉最低需24小時形成一顆殼蛋。綜合以上,蛋用鵪鶉特性為初產日齡早、產蛋週期長、停產間期短和濾泡生長時間短,肉用鵪鶉的蛋較大。
This study aimed to analyze the egg-type of quails breed for egg production and meat-type quails of meat production. It focused on the time of follicle growth and the time taken to form egg in the oviduct after ovulation. The experimental subjects were commercial egg-type Japanese quails and meat-type quails of the Golden strain. Egg production records were kept daily from the onset of laying until 24 weeks of age, and at 14-16 weeks, the quails were fed with Sudan IV and Sudan Black, both fat-soluble dyes, to dye the follicles for counting and measuring follicle growth day. Additionally, egg weights were measured, and a camera recorded daily egg laying times. The results showed that egg-type Japanese quails had an average onset of laying at 42 days of age, significantly earlier than the meat-producing quails at 50 days of age (P < 0.05). In terms of egg laying cycle, the average egg-laying period for egg-type quails was 25.1 days, significantly longer than the 10.4 days for meat-type quails (P < 0.05). At 16 weeks of age, egg-type quails laid an average of 73.5 eggs with an average laying rate of 90.7%, while meat-type quails laid an average of 63.6 eggs with an average laying rate of 85.4%. Regarding follicle growth, egg-type quails required an average of 5.2 days, while meat-type quails required 6.2 days. There were no significant differences in the time taken for the formation of egg yolk in the oviduct after follicle ovulation between the two types of quails.
中文摘要 i
Abstract iii
目次 iv
表目次 vi
圖目次 vii
壹、 前言 1
貳、 文獻探討 3
一、 鵪鶉產蛋的生理 3
二、 影響鵪鶉產蛋的因素 15
三、 其他 18
參、 材料與方法 20
一、 試驗鵪鶉品種 20
二、 飼養管理 20
(一)、 鵪鶉育雛期 20
(二)、 鵪鶉產蛋期 20
(三)、 個體識別 21
三、 試驗禽舍與錄影設施 21
四、 試驗測定項目 24
(一)、 產蛋量 24
(二)、 蛋重 24
(三)、 濾泡生長時間 24
(四)、 每日濾泡生長克數 24
(五)、 產蛋間隔時間 25
(六)、異常蛋 25
五、第二世代繁殖 25
肆、 統計分析 28
一、 濾泡生長時間與其他性狀比較 28
二、 總產蛋數與其他性狀比較 28
三、 性狀遺傳分析 28
伍、 結果與討論 30
一、 產蛋性能 30
(一) 初產日齡 30
(二) 產蛋週期 30
(三) 產蛋時間間隔 33
二、 產蛋率與產蛋間格時間關係 35
三、 蛋鵪鶉與肉鵪鶉之總蛋數和產蛋性狀之相關性 38
四、 個別鵪鶉產蛋模式差異 40
(一) 產蛋模式 40
五、 濾泡生長差異 46
(一) 濾泡生長相關性狀比較 46
六、 遺傳率與遺傳相關、表型相關 49
(一) 蛋鵪鶉產蛋相關遺傳係數 49
(二) 產蛋間隔與產蛋率之間的關聯 50
七、 異常蛋 53
陸、 結論 54
柒、 參考文獻 55
顏正儒。2003。台灣商用土雞、選育土雞與單冠白色來航雞在濾泡生長速度與產蛋間格時間之比較。國立中興大學動物科學系,碩士論文。臺中市。
Alkan, S., K. Karabag, A. Galic, T. Karsli and M. S. Balcioglu. 2010. Effects of Selection for Body Weight and Egg Production on Egg Quality Traits in Japanese Quails (Coturnix coturnix japonica) of Different Lines and Relationships between These Traits. Kafkas Univ Vet Fak Derg. 16:239-244.
Apperson, K. D., E. Karyn, G. Cherian and C. V. Löhr. 2017. Histology of the Ovary of the Laying Hen (Gallus domesticus). Vet Sci. 4:66.
Appleby, M. C., B. O. Hughes, and C. J. Savory. 1994. Current state of poultry welfare: Progress, problems and strategies. Br. Poult. Sci. 35:467-475
Bagh, J., B. Panigrahi, N. Panda, C. R. Pradhan, B. K. Mallik, B. Majhi, and S. S. Rout. 2016. Body weight, egg production, and egg quality traits of gray, brown, and white varieties of Japanese quail (Coturnix coturnix japonica) in coastal climatic condition of Odisha. Vet World. 9:832-836.
Bao, T., J. Yao, S. Zhou, Y. Ma, J. Dong, C. Zhang, and Yuling Mi. 2022. Naringin prevents follicular atresia by inhibiting oxidative stress in the aging chicken. Poult. Sci. 101:101891.
Bacon, W. L and M. Koontz. 1971. Ovarian Follicular Growth and Maturation in Coturnix Quail. Poult. Sci. 50:233-236.
Bédécarrats, G. Y and C. Hanlon. 2017. Effect of Lighting and Photoperiod on Chicken Egg Production and Quality. Egg Innovations and Strategies for Improvements. 65–75.
Bécot. L., N. Bédère, J. Coton, T. Burlot and P. L. Roy. 2023. Nest preference and laying duration traits to select against floor eggs in laying hens. Genet. Sel. Evol. 55:8.
Chen C. F., Y. L. Shiue, C. J. Yen, P. C. Tang, H. C. Chang and Y. P. Lee. 2007. Laying traits and underlying transcripts, expressed in the hypothalamus and pituitary gland, that were associated with egg production variability in chickens. Theriogenology. 68:1305–15.
Ciccone, N. A., P. J. Sharp, P. W. Wilson and Dunn, I. C. 2003. Expression of neuroendocrine genes within the hypothalamic-pituitary-ovarian axis of end of lay broiler breeder hens. Worlds Poult. Sci J. S11–S12.
Colin G. S and S. Dridi. 2021. Sturkie's Avian Physiology. 21.
Cui, Y. M., J. Wang, H. J. Zhang, J. Feng, S. G. Wu and G. H. Qi. 2019. Effect of photoperiod on ovarian morphology, reproductive hormone secretion, and hormone receptor mRNA expression in layer ducks during the pullet phase. 6:2439-2447.
Denise, K. A., E. B. Karyn, G. Cherian and C.V Löhr. 2017. Histology of the Ovary of the Laying Hen (Gallus domesticus). Vet Sci. 4:66.
Du. Y., L. Liu, Y. He, T. Dou, J. Jia and C. Ge. 2020. Endocrine and genetic factors affecting egg laying performance in chickens: a review. Br Poult Sci. 5:538-549.
Garrett, W. M and H. D. Guthrie. 1997. Steroidogenic enzyme expression during preovulatory follicle maturation in pigs. Biol Reprod. 56:1424–31.
Harvey, S., Scanes, C. G., and J. G. Phillips. 1986. Avian reproduction. In ‘‘Fundamentals of Comparative Vertebrate Endocrinology’’. 125–185.
Hanlon, C., C. J Ziezold and G. Y. Bédécarrats. 2022. The Diverse Roles of 17β-Estradiol in Non-Gonadal Tissues and Its Consequential Impact on Reproduction in Laying and Broiler Breeder Hens. Front Physiol. 13:942790.
He, H., D Li, Y. Tian, Q. Wei, F. K. Amevor, C. Sun, C. Yu, C. Yang, H. Du, X. Jiang, M. Ma, C. Cui, Z. Zhang, K. Tian, Y. Zhang, Q. Zhu and H. Yin. 2022. miRNA sequencing analysis of healthy and atretic follicles of chickens revealed that miR-30a-5p inhibits granulosa cell death via targeting Beclin1. J. Anim. Sci. Biotechnol. 13:55.
Ikegami, K and Y. Takashi. 2012. Circadian clocks and the measurement of daylength in seasonal reproduction. Mol. Cell. Endocrinol. 5:76-81.
Isa A. M., Y. Y. Sun and L. Shi. 2020. Hybrids generated by crossing elite laying chickens exhibited heterosis for clutch and egg quality traits. Poult Sci. 99:6332-40.
Iswati, M. H. Natsir, G. Ciptadi and T. Susilawati. 2021. Egg Production, Fertility, Hatchability and Luteinizing Hormone Profile of Progesterone Hormone Injected to Arabic Gold Chicken (Gallus turcicus). J. World Poult. 11:73-82.
Ito, Y., M. Kihara, E. Nakamura, S. Yonezawa and N. Yoshizaki. 2003. Vitellogenin Transport and Yolk Formation in the Quail Ovary. Zool. Sci. 20:717-726.
Johnson, P. A. 2012. Follicle Selection in the Avian Ovary.
Johnson, A.L. and D.C. Woods. 2007. Chapter 6. Ovarian dynamics and follicle development. In: Reproductive Biology and Phylogeny of Aves, B.G.M. Jamieson, Ed., Science Publishers, Inc. pp: 243-277.
Johnson, A.L. 2015. Ovarian follicle selection and granulosa cell differentiation. Poult Sci. 4:781-785.
Jonhson, A. L. 2014. The avian ovary and follicle development: some comparative and practical insights. Turkish J. Vet. Anim. Sci. vol38. 6:11.
Jull. M.A. 1952. Poultry Breeding. John Wiley & Sons Inc.
Karabag, K., S. Alkan and M. S. Balcioglu. 2010. The Differences in Some Production and Clutch Traits in Divergently Selected Japanese Quails. Kafkas Univ Vet Fak Derg. 383-387.
Katherine, A, P. Brekke and N. Hemmings. 2021. Physiological factors influencing female fertility in birds. R. Soc. Open Sci. 8:202274.
Kristina O. S. 2019. Prolactin and avian parental care: New insights and unanswered questions. Horm Behav. 111:114-130.
Lipar, J. L., E. D. Ketterson, V. Nolan and J. M. Casto. 1999. Egg yolk layers vary in the concentration of steroid hormones in two avian species. Gen Comp Endocrinol. 115:220-227.
Li, J., W. Luo, T. Huang and Y. Gong. 2019. Growth differentiation factor 9 promotes follicle-stimulating hormone-induced progesterone production in chicken follicular granulosa cells. Gen Comp Endocrinol. 276:69-76.
Li, P., Y. Zhao, S. Yan, B. Song, Y. Liu, M. Gao, D. Tang and Y. Guo. 2022. Soya saponin improves egg-laying performance and immune function of laying hens. J. Anim. Sci. Biotechnol. 12:1–17.
Liu, H. Y., W. D. Zeng, A. L. Cao and C. Q. Zhang. 2010. Follicle-stimulating hormone promotes proliferation of cultured chicken ovarian germ cells through protein kinases A and C activation. J Zhejiang Univ Sci B.12:952-957.
Liu, H. K., K. E. Nestor, D. W. Long and W. L Bacon. 2001. Frequency of luteinizing hormone surges and egg production rate in turkey hens. Biol Reprod. 64:1769–1775.
Lotfi, E, S. Zerehdaran and Z. Raoufi. 2012. Genetic properties of egg quality traits and their correlations with performance traits in Japanese quail. Br. Poult Sci. 53, 585–591.
Lukanov, H. 2019. Domestic quail (Coturnix japonica domestica), is there such farm animal? Worlds Poult Sci J. 75: 1-11.
Marks, H. L. 1991. Divergent selection for growth in Japanese quail under split and complete nutritional environments. 4. Genetic and correlated responses from generations 12 to 20. Poult. Sci. 70:453-462.
Morris, T. R. 1973. The effects of ahemeral light and dark cycles on egg production in the fowl. Poult Sci. 52. 423-445.
Narinc, D., A. Aygun, E. Karaman and T. Aksoy. 2015. Egg shell quality in Japanese quail: characteristics, heritabilities and genetic and phenotypic relationships. Animal. 9:7. 1091-1096.
Navara, K. J. and E. R. Wrobel. 2019. Frequent double ovipositions in two flocks of laying hens. Poult. Sci. 98: 1903-1910.
Nestor, K. E. 1985. Genetics of growth and reproduction in the turkey. 10. Tandem selection for increased body weight andegg production. Poult. Sci. 64:2221-2222.
Oruwari, B. M., and T. Brody. 1988. Roles of age, body weight, and composition in the initiation of sexual maturation of Japanese quail (Coturnix coturnix japonica). Br. Poult. Sci. 29:481-488.
Preisinger, R. 2018. Innovative layer genetics to improve egg production. Lohmann Information. 52:4-11.
Pu, S., K. Nagaoka and G. Watanabe. 2019. Yolk immunoreactive corticosterone in hierarchical follicles of Japanese quail (Coturnix japonica) exposed to heat challenge. Gen Comp Endocrinol. 279:148-153.
Romao, J. M., T. G. V. Moraes, R. S. C. Teixeira, W. M. Cardoso and C. C. Buxade. 2008. Effect of egg storage length on hatchability and weight loss in incubation of egg and meat type Japanese quails. Braz. J. Poult. Sci. 10:143-147.
Rahman, A. 2013. AN Introduction to Morrhology of the Reproductive System and Anatomy of Hen’s Egg. J. Life Earth Sci. 8:1-10.
Richards, J. S., T. Jahnsen, L. Hedin, J. Lifka, S. Ratoosh, J. M. Durica and N. B. Goldring. 1987. Ovarian Follicular Development: From Physiology to Molecular Biology. Recentprogress in Hormone Research. 43: 231–276.
Rivas, R. E. C., M. P. C. Nieto and M. Kamiyoshi. 2016. Effects of Steroid Hormone in Avian Follicles. 29:487-499.
Rozenboim, I., E. Tako, O. Garber., J. A. Proudman and Z.Uni. 2007. The Effect of Heat Stress on Ovarian Function of Laying Hens. Poult. Sci. 86: 1760-1765.
Robinson, F. E., R.T. Hardin and A.R. Robblee. 1990. Reproductive senescence in domestic fowl: effects on egg production, sequence length and inter-sequence pause length. Br. Poult. Sci. 31: 871-879.
Santhi, D. and A. Kalaikannan. 2017. Japanese quail (Coturnix coturnix japonica) meat: characteristics and value addition. Worlds Poult Sci J. 73: 337-344.
Santos, T. C and R.S. Gates, I. F. F. Tinôco, S. Zolnier, K. S. O. Rocha, L. C. S. R. Freitas. 2019. Productive performance and surface temperatures of Japanese quail exposed to different environment conditions at start of lay. Poult Sci. 7:2830-2839.
Sechman, A. 2013. The role of thyroid hormones in regulation of chicken ovarian steroidogenesis. Gen Comp Endocrinol. 190:68-75.
Silva P. L., J. C. Ribeiro, A. C. Crispim, F. G. Silva, C. M. Bonafé, F. F. Silva and R. A. Torres. 2013. Genetic parameters of body weight and egg traits in meat-type quail. Livest Sci. 153:27-32.
Sreesujatha, R. M., S. Jeyakumar, A. Kundu and C. Balasundaram. 2016. Use of transcutaneous ultrasonography to characterize ovarian status, size distribution, and hierarchical status of follicles in Japanese quail (Coturnix coturnix japonica). Theriogenology. 86: 2131-2139.
Stewart, C and J. C. Marshall. 2022. Seasonality of prolactin in birds and mammals. 919-938.
Tamura, T. F. Shunsaku, K. Hakaruand and Y. Mitsuhiro. 1966. Histological observations on the quail oviduct; on the secretions inthe mucous epithelium of the uterus. J. Fat. Fish. Anim. Hush. 6: 357-371.
Tanaka, K., T. Imai and O. Koga. 1977. Superficial pigmentation of egg shell in Japanese quail, Coturnix coturnix japonica. Jap Poult Sci. 229-231.
Thakur, P. N. and P.J. Kapadnis. 2019. Gross Anatomical and Biometrical Studies on Oviduct in Japanese Quail. 8:79-84.
Thiele H. H., T. G. Lohmann and Cuxhaven. World Poult. 2009. 2:39-48.
Tongsiri, S., G. M. Jeyaruban, S. Hermesch, J. H. J. van der Werf, L. Li and T. Chormai. 2019. Genetic parameters and inbreeding effects for production traits of Thai native chickens. Asian-Australas J Anim Sci. 32(7): 930-938.
Tůmová, E., L. Uhlířová, R. Tůma, D. Chodová and L. Máchal. 2017. Age related changes in laying pattern and egg weight of different laying hen genotypes. Anim. Reprod. Sci. 183:21-26.
Warren D. C. 1953. Practical Poultry Breeding. The Macmillan Company.
Wilson, S. C. and P. J. Sharp. 1973. Variations in plasma LH levels during the ovulatory cycle of the hen (Gallus domesticus). J. Reprod. Fertil. 35: 561–564.
Wolford J. H., R. K. Ringer and T. H. Coleman. 1987. Ovulation and egg formation in the Beltsville Small White Turkey. Poult Sci 1964 43:187–189.
Woodard, A. E. and F. B. Mather. 1964. The Timing of Ovulation, Movement of the Ovum Through the Oviduct, Pigmentation and Shell Deposition in Japanese Quail (Coturnix coturnix japonica). Poult Sci. 43:1427-1432.
Yang, J., D. W. Long and W. L. Bacon. 1997. Changes in plasma concentrations of luteinizing hormone, progesterone, and testosterone in turkey hens during the ovulatory cycle. Gen Comp Endocrinol. 106:281–292.
Yupaporn, C and M. E. E. Halawani. 2005. Neuroendocrinology of the Female Turkey Reproductive Cycle. Poult Sci. 2:87-100.
Zhang Z. C., X. X. Du and S. Lai. 2022. A transcriptome analysis for 24-hour continuous sampled uterus reveals circadian regulation of the key pathways involved in eggshell formation of chicken. Poult Sci. 101:101531.
Zhou, X., D. Jiang, Z. Zhang, X. Shen, J. Pan, D. Xu, Y. Tian and Y. Huang. 2022. Expression of GnIH and its effects on follicle development and steroidogenesis in quail ovaries under different photoperiods. Poult Sci. 101:102227.
電子全文 電子全文(網際網路公開日期:20280131)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top