跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏素心
研究生(外文):Su-Xin Yan
論文名稱:飼糧中添加奈米矽片對豬隻生長之影響
論文名稱(外文):Effects of dietary supplementation of nanosilicate platelets on growth performance of pigs
指導教授:陳洵一
指導教授(外文):Shuen-Ei Chen
口試委員:黃三元鄭淳予
口試委員(外文):San-Yuan HuangChuen-Yu Cheng
口試日期:2024-07-11
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:64
中文關鍵詞:藥物殘留奈米矽片促進生長抗生素替代品
外文關鍵詞:Drug residuesNanosilicate plateletsGrowth promotionAntibiotic alternativesPigs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在養豬場面臨的眾多困難中,腸道疾病是面臨的最嚴重問題之一,過去大多以抗生素治療或預防,為了避免抗藥性及藥物殘留問題,需積極找尋替代方案;另一方面集約化養豬系統產生的廢棄物造成環境污染,更加劇養豬業困難的處境,這些都對生產的盈利能力產生負面影響。粘土添加劑在飼料工業中作為顆粒粘合劑,同時提高胺基酸的利用率、結合毒素和重金屬,並減少動物胃腸道的腹脹和其他代謝紊亂。奈米矽片( nanosilicate platelets; NSP)是一種將天然粘土由層狀堆疊狀態剝離出來成分散狀的產品,具片狀薄層、大表面積並帶有負電荷,可防止病原體感染保護宿主細胞,並有促進生長的功用。本研究之目的為測試飼糧中添加 NSP 對豬隻生長的影響。試驗將500頭28日齡的三品種肉豬(LYD)於商業豬場飼養,試驗分為對照組(CON)和飼料添加0.1% NSP組(NSP),每組3重複,每重複約83~84隻離乳仔豬,試驗進行21週,評估生長性能、免疫反應、血液生化、糞便成分、糞便評分與特定微生物檢測,以T-test及one-way ANOVA作統計分析並定義P<0.05有顯著差異。結果顯示, NSP組之體增重在18週齡顯著優於CON組;而FCR及育成率也皆優於CON組,顯示其在經濟上的效益。糞便水分、灰分、尿素、氨及糞便評分,兩組之間沒有顯著差異,此顯示NSP對飼料消化沒有重大影響,NSP組總凱氏氮量在12、18及22週齡顯著高於對照組,推測是NSP高陽離子容量交換,可以捕獲NH4+和其他含氨基分子於帶電荷結構之中;另外NSP可能在胃腸道中提高上皮細胞與菌相turnover,促進剝離細胞與菌體蛋白的降解,有促進生長的功效。糞便特定微生物分析結果顯示,除大腸桿菌在6週齡NSP組的菌量顯著高於CON組外,其餘週齡菌量都低於對照組,顯示NSP 於體內有抑制腸胃道大腸桿菌作用,而兩組糞便中沙門氏菌及產氣夾膜梭菌皆未偵測到。血液免疫參數分析結果顯示,TNF-α在組間沒有顯著差異,而IL-6在8週齡NSP組顯著低於CON組,其餘週齡則無顯著差異。各組間血液GOT、白蛋白、尿素氮、鈉、鉀、氯及血氨皆沒有顯著差異,惟NSP組8週齡時GPT顯著低於CON組。綜合上述結果可知,餵食添加0.1%奈米矽片的飼糧有益於提升三品種肉豬的生長性能,也有取代促生長抗生素使用的潛力,達到翦抗的目的。
Among the many challenges faced in pig farming, intestinal diseases represent one of the most serious issues. Traditionally, these have been treated or prevented primarily with antibiotics, but concerns over antibiotic resistance and residues necessitate active exploration of alternative solutions. Additionally, the environmental pollution caused by intensive pig farming exacerbates these difficulties, negatively impacting profitability. Clay additives in the feed industry serve as pellet binders, enhance amino acid utilization, bind toxins and heavy metals, and reduce gastrointestinal bloating and other metabolic disorders in animals. Nanosilicate platelets (NSP), derived by exfoliating natural clays into dispersed layered components, possess thin plate-like layers with a large surface area and negative charge. They can prevent pathogen infections, protect host cells, and promote growth. The objective of this study was to evaluate the effect of adding NSP to feed on the growth of pigs. The trial involved 500 pigs of three breeds (LYD), 28 days old, raised in a commercial pig farm. The experiment comprised a control group (CON) and a group with feed supplemented with 0.1% NSP (NSP), each with 3 replicates of approximately 83-84 piglets. The trial lasted 21 weeks and assessed growth performance, immune responses, blood biochemistry, fecal composition, fecal scoring, and specific microbial tests. Statistical analysis using T-tests and one-way ANOVA indicated significant differences defined as P < 0.05. Results showed that the NSP group had significantly higher body weight gain at 18 weeks compared to the CON group. Feed conversion ratio (FCR) and carcass yield were also superior in the NSP group, demonstrating economic benefits. Fecal moisture, ash content, urea, ammonia, and fecal scoring did not differ significantly between the two groups, suggesting NSP had no major impact on feed digestion. Total Kjeldahl nitrogen in the NSP group was significantly higher at 12, 18, and 22 weeks compared to the control, indicating NSP's high cation exchange capacity could capture NH4+ and other nitrogen-containing molecules. NSP may also enhance turnover of epithelial cells and microbiota in the gastrointestinal tract, promoting degradation of cell and bacterial proteins and thus growth promotion. Specific microbial analysis of feces indicated significantly higher levels of Escherichia coli in the NSP group at 6 weeks, but lower levels at other ages, suggesting NSP inhibited E. coli in the intestines. Salmonella and Clostridium perfringens were undetected in both groups. Blood immune parameter analysis showed no significant differences in TNF-α between groups, while IL-6 was significantly lower in the NSP group at 8 weeks. Blood parameters including GOT, albumin, urea nitrogen, sodium, potassium, chloride, and blood ammonia did not differ significantly between groups, except for significantly lower GPT in the NSP group at 8 weeks of age. In conclusion, feeding pigs with feed supplemented with 0.1% nanosilicate platelets benefits the growth performance of three breeds of meat pigs. It also shows potential to replace growth-promoting antibiotics, thus achieving antibiotic stewardship goals.
摘要 i
Abstract ii
目次 iv
圖次 vii
表次 viii
壹、文獻探討 1
一、養豬產業現況 1
二、肉豬不同階段面臨的困境 2
(一) 保育階段 2
1.早期離乳 2
2. 離乳後下痢 (Post-weaning diarrhea, PWD ) 5
(二) 肥育階段 12
1. 氨 (ammonia, NH3) 12
2. 細菌性傳染病治療方式 13
三、 抗生素及其替代物 13
四、黏土礦物 15
(一) 蒙脫石 17
1. 蒙脫石特性 17
(二)奈米矽片 20
1. 奈米矽片之特性及毒性 20
2. 奈米矽片的抗菌機制 21
3.奈米矽片作為載體的應用 23
五、發炎相關細胞因子 23
六、研究目的 25
貳、材料與方法 26
一、試驗動物與設計 26
二、飼糧與試驗添加劑來源 26
三、試驗動物管理 28
四、樣品採集 29
(一)血清樣品 29
(二)糞便樣品 29
五、測定項目 29
(一)生長性能 29
(二)糞便水分分析 29
(三)糞便灰分分析 29
(四)糞便評分 30
(五)糞便凱氏氮分析 31
(六)糞便中氨氣(ammonia)濃度分析 31
(七)糞便中尿素(urea)濃度分析 31
(八) 糞便中特定微生物檢測 31
(九)血液IL-6分析 34
(十)血液TNF-α分析 34
(十一) 血液中Ammonia含量分析 35
(十二) 血液尿素氮 (BUN) 含量分析 35
(十三) 血液生化分析 35
六、統計分析 35
參、結果 36
一、奈米矽片對試驗豬隻生長性狀之影響 36
二、奈米矽片對試驗豬隻糞便組成份之影響 38
三、奈米矽片對豬隻糞便評分之影響 40
四、奈米矽片對豬隻糞便特定微生物之影響 41
五、奈米矽片添加劑對不同階段豬隻免疫狀態之影響 42
六、奈米矽片添加劑對不同階段豬隻血液生化之影響 44
肆、討論 49
一、奈米矽片對試驗豬隻生長性狀之影響 49
二、奈米矽片對試驗豬隻糞便組成份及糞便評分之影響 51
三、奈米矽片對豬隻糞便微生物之影響 52
四、奈米矽片添加劑對不同階段肉豬免疫狀態之影響 53
五、奈米矽片添加劑對不同階段肉豬血液生化之影響 54
伍、結論 55
陸、參考文獻 56
張堡政。2014。飼糧添加益生菌與中草藥對母豬與離乳仔豬生長與腸道健康之影響。碩士論文。國立中興大學。臺中市。
黃子恩。2014。飼料添加商用益生菌飼料添加物對豬隻生長性能與免疫力之影響。碩士論文。東海大學。臺中市。
董珈瑄。2017。益生菌與中草藥組合對仔豬生長及改善下痢之效果評估。碩士論文。國立中興大學。臺中市。
吳弘毅、廖明輝、施玟玲、劉世賢、葉宗明、徐翠玲。2017。畜牧場之食媒性病原之監測與流行病學分析。衛生福利部疾病管制署 106 年委託科技研究計畫(編號:MOHW106-CDC-C-114-133303),衛生福利部疾病管制署。
瑪拉丁。2021。飼糧中添加奈米矽片對白肉雞呼吸道健康之影響。碩士論文。國立中興大學。臺中市。
陳郁雯。2023。飼糧中添加奈米矽片和牛至精油複方對白肉雞壞死性腸炎防治效果。碩士論文。國立中興大學。臺中市。
行政院農業部。2023。民國112年11月底養豬頭數調查報告。臺灣。
Abbès, S., Z. Ouanes, J. ben Salah-Abbès, Z. Houas, R. Oueslati, H. Bacha, and O. Othman. 2006. The protective effect of hydrated sodium calcium aluminosilicate against haematological, biochemical and pathological changes induced by Zearalenone in mice. Toxicon 47: 567-574.
Alexopoulos, C., D. S. Papaioannou, P. Fortomaris, C. S. Kyriakis, A. Tserveni-Goussi, A. Yannakopoulos, and S. C. Kyriakis. 2007. Experimental study on the effect of in-feed administration of a clinoptilolite-rich tuff on certain biochemical and hematological parameters of growing and fattening pigs. Livest. Sci. 111: 230-241.
Almeida, J. A. S., Y. Liu, M. Song, J. J. Lee, H. R. Gaskins, C. W. Maddox, O. Osuna, and J. E. Pettigrew. 2013. Escherichia coli challenge and one type of smectite alter intestinal barrier of pigs. J. Anim. Sci. Biotechnol. 4: 1-8. doi: 10.1186/2049-1891-4-52
Amer, S. A., A. T. Kishawy, N. M. ELseddawy, and M. E. Abd El-Hack. 2018. Impacts of bentonite supplementation on growth, carcass traits, nutrient digestibility, and histopathology of certain organs of rabbits fed diet naturally contaminated with aflatoxin. Environ. Sci. Pollut. Res. 25: 1340-1349.
Acevedo-Villanueva, K. Y., G. O. Akerele, W. G. Al Hakeem, S. Renu, R. Shanmugasundaram, and R. K. Selvaraj. 2021. A Novel approach against Salmonella: A review of polymeric nanoparticle vaccines for broilers and layers. Vaccines 9: 1041. doi: 10.3390/vaccines9091041
Bragg, W. L. 1937. Atomic structure of minerals. J. Chem. Educ. 14: 499.
Bremner, J. M. 1996. Nitrogen‐total. Methods Soil Analy. Part 3 Chem. Methods 5: 1085-1121.
Barton, M. D. 2014. Impact of antibiotic use in the swine industry. Curr. Opin. Microbiol. 19: 9-15.
Balasubramanian, R., J. Im, J. S. Lee, H. J. Jeon, O. D. Mogeni, J. H. Kim, R. Rakotozandrindrainy, S. Baker, and F. Marks. 2019. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum Vaccines Immunother. 15: 1421-1426.
Benjamin M., A. Moeser, and S. La Trendesse. 2019. Weaning woes, an overview of weaning stress in piglets. MSU Pork Q. 22: 4.
Bercier, P., and D. Grenier. 2019. TNF-α disrupts the integrity of the porcine respiratory epithelial barrier. Res. Vet. Sci. 124: 13-17.
Barros, M. M., J. Castro, D. Araújo, A. M. Campos, R. Oliveira, S. Silva, O.-M. Divanildo, and C. Almeida. 2023. Swine colibacillosis: Global epidemiologic and antimicrobial scenario. Antibiotics 12: 682. doi: 10.3390/antibiotics12040682
Colina, J., A. Lewis, and P. S. Miller. 2000. A review of the ammonia issue and pork production. University of Nebraska-Lincoln. USA.
Carlson, A. R., and T. Blaha. 2001. In-herd prevalence of salmonella in 25 selected Minnesota swine farms. J. Swine. Health Prod. 9: 7-10.
Chmielowiec-Korzeniowska, A., L. Tymczyna, and M. Babicz. 2012. Assessment of selected parameters of biochemistry, hematology, immunology and production of pigs fattened in different seasons. Arch. Anim. Breed. 55: 469-479.
Clements, A., J. C. Young, N. Constantinou, and G. Frankel. 2012. Infection strategies of enteric pathogenic Escherichia coli. Gut microbes. 3: 71-87.
Chiao, S. H., S. H. Lin, C. I. Shen, J. W. Liao, I. J. Bau, J. C. Wei, L. P. Tseng, S. H. Hsu, P. S. Lai, S. Z. Lin, J. J. Lin, and H. L. Su. 2012. Efficacy and safety of nanohybrids comprising silver nanoparticles and silicate clay for controlling S almonella infection. Int. J. Nanomed. 2421-2432.
Consigliere, R., A. Costa, and D. Meloni. 2016. Investigation on the effects of vermiculite-based feed additives on ammonia and nitrate emission from pig slurry and pig growth performances. Vet. Sci. Dev. 6: 65-68.
Chen, J., K. Kang, and X. Qu. 2018. Functional mechanisms of montmorillonite and its application in poultry production. Chin. J. Anim. Nutr. 30: 1217-1223.
Cappelaere, L., J. Le Cour Grandmaison, N. Martin, and W. Lambert. 2021. Amino acid supplementation to reduce environmental impacts of broiler and pig production: a review. Front. Vet. Sci. 8: 689259.
Cao, S., L. Hou, L. Sun, J. Gao, K. Gao, X. Yang, Z. Jiang and L. Wang. 2022. Intestinal morphology and immune profiles are altered in piglets by early-weaning. Int. Immunopharmacol. 105: 108520. doi: 10.1016/j.intimp.2022.108520
Dolcater, D. L., M. L. Jackson, and J. K. Syers. 1972. Cation exchange selectivity in mica and vermiculite. Am. Mineral. 57: 1823-1831.
Dewey, C. E., T. E. Wittum, H. S. Hurd, D. A. Dargatz, and G. W. Hill. 1995. Herd and litter-level factors associated with the incidence of diarrhea morbidity and mortality in piglets 4-14 days of age. Swine Health Prod. 3: 105-112.
Defang, H. F., and A. A. Nikishov. 2009. Effect of dietary inclusion of zeolite on performance and carcass quality of grower-finisher pigs. Energy 47: 43-9.
Duan, Q. W., J. T. Li, L. M. Gong, H. Wu, and L. Y. Zhang. 2013. Effects of graded levels of montmorillonite on performance, hematological parameters and bone mineralization in weaned pigs. Asian-Australas. J. Anim. Sci. 26: 1614. doi: 10.5713/ajas.2012.12698
Deng, Q. Q., X. Tan, H. R. Wang, Q. Y. Wang, P. F. Huang, Y. L. Li, J. Z. Li, J. Huang, H. S. Yang, and Y. L. Yin. 2020. Changes in cecal morphology, cell proliferation, antioxidant enzyme, volatile fatty acids, lipopolysaccharide, and cytokines in piglets during the postweaning period. J. Anim. Sci. 98: skaa046. doi: 10.1093/jas/skaa046
de Groot, N., F. Fariñas, C. G. Cabrera-Gómez, F. J. Pallares, and G. Ramis. 2021. Weaning causes a prolonged but transient change in immune gene expression in the intestine of piglets. J. Anim. Sci. 99: skab065. doi: 10.1093/jas/skab065
D'Ascanio, V., D. Greco, E. Menicagli, R. Scala, F. Maqoud, M. Antonacci, G. Avantaggiato, and D. Tricarico. 2021. In vitro and in vivo efficacy assessment of a new bentonite based material acting as a multi‐mycotoxin binder. FASEB J. 35. doi: 10.1096/fasebj.2021.35.S1.05324
Deng, Z., K. B. Jang, S. Jalukar, X. Du, and S. W. Kim. 2023. Efficacy of feed additive containing bentonite and enzymatically hydrolyzed yeast on intestinal health and growth of newly weaned pigs under chronic dietary challenges of fumonisin and aflatoxin. Toxins 15: 433. doi: 10.3390/toxins15070433
European Food Safety Authority, 2006. Opinion of the scientific panel on biological hazards on risk assessment and mitigation options of Salmonella in pig production. The EFSA J. 341: 1-131.
Elliott, C. T., L. Connolly, and O. Kolawole. 2020. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res. 36: 115-126.
Fedorka-Cray, P. J., L. C. Kelley, T. J. Stabel, J. T. Gray, and J. A. Laufer. 1995. Alternate routes of invasion may affect pathogenesis of salmonella typhimurium in swine. Infect. Immun. 63: 2658-2664.
Fossum, C. 1998. Cytokines as markers for infections and their effect on growth performance and well-being in the pig. Domest. Anim. Endocrinol. 15: 439-444.
Franklin, M. A., A. G. Mathew, J. R. Vickers, and R. A. Clift, 2002. Characterization of microbial populations and volatile fatty acid concentrations in the jejunum, ileum, and cecum of pigs weaned at 17 vs 24 days of age. J. Anim. Sci. 80: 2904-2910.
Fairbrother, J. M., and E. C. Nadeau. 2019. Diseases of Swine. 11th ed. 807-834.
Faccin, J. E., F. Laskoski, L. Hernig, R. Ulguim, A. P. Mellagi, and F. Bortolozzo. 2019. Increasing weaning age: A tool to improve pig performance in a multisite production system. J. Anim. Sci. 97: 95-96.
Guerin, S., Y. Ramonet, J. LeCloarec, M. C. Meunier-Salaün, P. Bourguet, and C. H. Malbert. 2001. Changes in intragastric meal distribution are better predictors of gastric emptying rate in conscious pigs than are meal viscosity or dietary fibre concentration. Br. J. Nutr. 85: 343-350.
Geske, G. D., R. J. Wezeman, A. P. Siegel, and H. E. Blackwell. 2005. Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J. Am. Chem. Soc. 127: 12762-12763.
Gomez, C., M. Soledad. 2006. Development of gut microbiota in the pig: Modulation of bacterial communities by different feeding strategies. Agri. Food Sci. 1-218.
Gross, M. 2013. Antibiotics in crisis. Curr. Biol. 23: 1063-1065.
Gresse, R., F. Chaucheyras-Durand, M. A. Fleury, T. Van de Wiele, E. Forano, and S. Blanquet-Diot. 2017. Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends Microbiol. 25: 851-873.
Harvey, J. W. 1997. The erythrocyte: Physiology, metabolism, and biochemical disorders. Clinical biochemistry of domestic animals. 173-240.
Hu, X. R., G. Lu, L. Chen, J. M. Gu, and Y. Zhang. 2002. Study on the mechanism of the interaction between montmorillonite and bacterium. Yao Xue Xue Bao. 37: 718-720.
Hu, C. H., K. Xiao, Z. S. Luan, and J. Song. 2013. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 91: 1094-1101.
Hassan, S., G. Prakash, A. B. Ozturk, S. Saghazadeh, M. F. Sohail, J. Seo, M. R. Dokmeci, Y. S. Zhang, and A. Khademhosseini. 2017. Evolution and clinical translation of drug delivery nanomaterials. NanobToday 15: 91-106.
Hao, C., Y. Pan, Z. Zhang, and Y. Zeng. 2019. Kinetic determination of urease activity in fresh pig feces and slurry and the effect on ammonia production at different conditions. Sustainability 11: 6396.
Holanda, D. M., and S. W. Kim. 2020. Efficacy of mycotoxin detoxifiers on health and growth of newly-weaned pigs under chronic dietary challenge of deoxynivalenol. Toxins. 12: 311.
Hohnstein, F. S., M. Meurer, N. de Buhr, M. von Köckritz-Blickwede, C. G. Baums, G. Alber, and N. Schütze. 2020. Analysis of porcine pro-and anti-inflammatory cytokine induction by S. suis in vivo and in vitro. Pathogens. 9: 40.
Huang, J. T., L. C. Chang, C. S. Cheng, J. J. Lin, S. Y. Huang, and S. E. Chen. 2020. Cytotoxicity produced by silicate nanoplatelets: study of cell death mechanisms. Toxins 12: 623. doi: 10.3390/toxins12100623
Horky, P., P. Nevrkla, T. Kopec, I. Bano, M. Skoric, J. Skladanka, and S. Skalickova. 2022. Is a new generation of mycotoxin clay adsorbents safe in a pig’s diet? Porcine Health Manag. 8: 31. doi: 10.1186/s40813-022-00275-w
Huang, M., J. Yi, H. Chen, Y. Song, X. Hu, H. Zhou, and N. Zhu. 2023. Dietary zinc-loaded montmorillonite supplementation improves growth performance, diarrhea, intestinal barrier function and regulating gut microbiota in weaned piglets. Anim. 23: 3630. doi: 10.3390/ani13233630
He, H., M. Yang, W. Li, Z. Lu, Y. Wang, and M. Jin. 2023. Fecal microbial and metabolic characteristics of swine from birth to market. Front. Microbiol. 14: 1191392. doi: 10.3389/fmicb.2023.1191392
Jung, W. K., H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park. 2008. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli., Appl. Environ. Microbiol. 74: 2171-2178.
Jung, B. G., N. T. Toan, S. J. Cho, J. H. Ko, Y. K. Jung, and B. J. Lee. 2010. Dietary aluminosilicate supplement enhances immune activity in mice and reinforces clearance of porcine circovirus type 2 in experimentally infected pigs. Vet. Microbiol. 143: 117-125.
Jin, L., W. Wang, J. Degroote, N. Van Noten, H. Yan, M. Majdeddin, M. Van Poucke, L. Peelman, A. Goderis, K. Van de Mierop, R. Mombaerts, S. De Smet, and J. Michiels. 2017. Mycotoxin binder improves growth rate in piglets associated with reduction of toll-like receptor-4 and increase of tight junction protein gene expression in gut mucosa. J. Anim. Sci. Biotechnol. 8: 1-10. doi: 10.1186/s40104-017-0210-4
Jang, D. I., A. H. Lee, H. Y. Shin, H. R. Song, J. H. Park, T. B. Kang, S. R. Lee, and S. H. Yang. 2021. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 22: 2719.
Kyriakis, S. C., D. S. Papaioannou, C. Alexopoulos, Z. Polizopoulou, E. D., and C. S. Kyriakis. 2002. Experimental studies on safety and efficacy of the dietary use of a clinoptilolite-rich tuff in sows: A review of recent research in Greece. Microporous Mesoporous Mat. 51: 65-74.
Kruse, R., B. Essén-Gustavsson, C. Fossum, and M. Jensen-Waern. 2008. Blood concentrations of the cytokines IL-1beta, IL-6, IL-10, TNF-alpha and IFN-gamma during experimentally induced swine dysentery. Acta Vet. Scand. 50: 1-7. doi: 10.1186/1751-0147-50-32
Le Goff, G., J. Van Milgen, and J. Noblet. 2002. Influence of dietary fibre on digestive utilization and rate of passage in growing pigs, finishing pigs and adult sows. Anim. Sci. 74: 503-515.
Lallès, J. P., B. Sève, S. Pié, F. Blazy, J. Laffitte, and I. P. Oswald. 2004. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 134: 641-647.
Lallès, J. P., P. Bosi, H. Smidt, and C. R. Stokes. 2007. Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc. 66: 260-268.
Li, P. R., J. C. Wei, Y. F. Chiu, H. L. Su, F. C. Peng, and J. J. Lin. 2010. Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Appl. Mater. Interfaces 2: 1608-1613.
Li, J., and I. H. Kim. 2013. Effects of dietary supplementation of sericite on growth performance, nutrient digestibility, blood profiles and fecal microflora shedding in growing pigs. Anim. Feed Sci. Technol. 184: 100-104.
Lin, J. J., W. J. Lin, S. D. Li, C. Y. Lin, and S. H. Hsu. 2013. Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS Appl. Mater. Interfaces 5: 433-443.
Lin, H. C., T. H. Lin, M. Y. Wu, Y. C. Chiu, C. H. Tang, M. J. Hour, H. C. Liu, H. J. Tu, R. S. Yang, and W. M. Fu. 2014. 5-Lipoxygenase inhibitors attenuate TNF-α-induced inflammation in human synovial fibroblasts. PLoS One 9: e107890.
Liu, T. Y., C. L Chen, Y. C. Lee, T. Y. Chan, Y. L. Wang, and J. J. Lin. 2016. First observation of physically capturing and maneuvering bacteria using magnetic clays. ACS Appl. Mater. Interfaces 8: 411-418.
Lillehoj, H. S., S. H. Lee, S. S. Park, M. Jeong, Y. Lim, G. F. Mathis, B. Lumpkins, F. Chi, C. Ching, and R. L. Cravens. 2016. Calcium montmorillonite-based dietary supplement attenuates necrotic enteritis induced by eimeria maxima and clostridium perfringens in broilers. Poul. Sci. 53: 329-340.
López-Colom, P., K. Yu, E. Barba-Vidal, Y. Saco, S. M. Martín-Orúe, L. Castillejos, D. Solà-Oriol, and A. Bassols. 2019. I-FABP, Pig-MAP and TNF-α as biomarkers for monitoring gut-wall integrity in front of salmonella typhimurium and ETEC K88 infection in a weaned piglet model. Res. Vet. Sci. 124: 426-432.
Li, Y., R. Zhang, X. Li, J. Li, W. Ji, X. Zeng, and J. Bao. 2021. Exposure to the environmental pollutant ammonia causes changes in gut microbiota and inflammatory markers in fattening pigs. Ecotox. Environ. Safe. 208: 111564. doi: 10.1016/j.ecoenv.2020.111564
Liu, J. H., W. K. Cai, N. Khatoon, W. H. Yu, and C. H. Zhou. 2021. On how montmorillonite as an ingredient in animal feed functions. Appl. Clay Sci. 202: 105963. doi:10.1016/j.clay.2020.105963
Lee, J. Y., H. N. Suh, K. Y. Choi, C. W. Song, and J. H. Hwang. 2022. Regenerative and anti‐inflammatory effect of a novel bentonite complex on burn wounds. Vet. Med. Sci. 8: 2422-2433.
Lamichhane, B., A. M. Mawad, M. Saleh, W. G. Kelley, P. J. Harrington, C. W. Lovestad, J. Amezcua, M. M. Sarhan, M. E. El Zowalaty, H. Ramadan, M. Morgan, and Y. A. Helmy. 2024. Salmonellosis: An overview of epidemiology, pathogenesis, and innovative approaches to mitigate the antimicrobial resistant infections. Antibiotics 13: 76.
Mumpton, F. A. 1999. La roca magica: Uses of natural zeolites in agriculture and industry. Proc. Natl. Acad. Sci. USA 96: 3463-3470.
Main, R. G., S. S. Dritz, M. D. Tokach, R. D. Goodband, and J. L. Nelssen. 2005. Effects of weaning age on growing-pig costs and revenue in a multi-site production system. J. Swine. Health Prod. 13: 189-197.
McFarland, B. C., S. W. Hong, R. Rajbhandari, G. B. Twitty Jr, G. K. Gray, H. Yu, E. N. Benveniste, and S. E. Nozell. 2013. NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PloS One 8: e78728. doi: 10.1371/journal.pone.0078728
Massacci, F. R., M. Berri, G. Lemonnier, E. Guettier, F. Blanc, D. Jardet, M. N. Rossignol, M. J. Mercat, J. Doré, P. Lepage, C. Rogel-Gaillard, and J. Estellé. 2020. Late weaning is associated with increased microbial diversity and Faecalibacterium prausnitzii abundance in the fecal microbiota of piglets. Anim. Microbiome 2: 1-12.
Madec F., N. Bridoux, S. Bounaix, and A. Jestin. Measurement of digestive disorders in the piglet at weaning and related risk factors. 1998. Prev Vet Med. 35:53–72.
Morris, R. S., P. R. Davies, and D. E. Lawton. 2002. Evolution of diseases in the world’s pig industry. In Proceedings of the 17th International Pig Veterinary Society Congress. 1-10.
Masri, S. A. 2015. Influence of the age at weaning and feeding regimes on the postnatal morphology of the porcine small intestine. J. Swine Health Prod. 23: 186-203.
Nadziakiewicza, M., S. Kehoe, and P. Micek. 2019. Physico-chemical properties of clay minerals and their use as a health promoting feed additive. Animals. 9: 714.
Noel, S. J., H. J. H. Jørgensen, and K. E. B. Knudsen. 2021. Prediction of protein and amino acid composition and digestibility in individual feedstuffs and mixed diets for pigs using near-infrared spectroscopy. Anim. Nutr. 7: 1242-1252.
Nadziakiewicz, M., M. W. Lis, and P. Micek. 2022. The effect of dietary halloysite supplementation on the performance and meat quality of pigs and some air indices in piggery. Sci. Rep. 12: 20533.
Ossowski, M., Ł. Wlazło, B. Nowakowicz-Dębek, and M. Florek. 2021. Effect of natural sorbents in the diet of fattening pigs on meat quality and suitability for processing. Animals 11: 2930. doi: 10.3390/ani11102930
Poulsen, H. D., and N. Oksbjerg. 1995. Effects of dietary inclusion of a zeolite (clinoptilolite) on performance and protein metabolism of young growing pigs. Anim. Feed Sci. Technol. 53: 297-303.
Papaioannou, D. S., S. C. Kyriakis, A. Papasteriadis, N. Roumbies, A. Yannakopoulos, and C. Alexopoulos. 2002. A field study on the effect of in-feed inclusion of a natural zeolite (clinoptilolite) on health status and performance of sows/gilts and their litters. Res. Vet. Sci. 72: 51-59.
Pluske, J. R., D. W. Pethick, D. E. Hopwood, and D. J. Hampson. 2002. Nutritional influences on some major enteric bacterial diseases of pigs. Nutr. Res. Rev. 15: 333-371.
Prvulović, D., A. Jovanović-Galović, B. Stanić, M. Popović, and G. Grubor-Lajšić. 2007. Effects of a clinoptilolite supplement in pig diets on performance and serum parameters. Czech J. Anim. Sci. 52: 159-166.
Peltoniemi, O. A. T., and C. Oliviero. 2015. Housing, management and environment during farrowing and early lactation. The gestating and lactating sow. 231-252.
Posthaus, H., S. Kittl, B. Tarek, and J. Bruggisser. 2020. Clostridium perfringens type C necrotic enteritis in pigs: diagnosis, pathogenesis, and prevention. J. Vet. Diagn. Invest. 32: 203-212.
Rhouma, M., J. M. Fairbrother, F. Beaudry, and A. Letellier. 2017. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 59: 1-19.
Rytwo, G. 2008. Clay minerals as an ancient nanotechnology: Historical uses of clay organic interactions, and future possible perspectives. J. Mater. Sci. 9: 15-17.
Rakhimova, N. R. 2020. A review of calcined clays and ceramic wastes as sources for alkali-activated materials. Geosystem Eng. 23: 287-298.
Rodrigues, L. A., M. O. Wellington, J. C. González-Vega, J. K. Htoo, A. G. Van Kessel, and D. A. Columbus. 2021. Functional amino acid supplementation, regardless of dietary protein content, improves growth performance and immune status of weaned pigs challenged with salmonella typhimurium. J. Anim. Sci. 99: skaa365. doi: 10.1093/jas/skaa365
Shurson, G. C., P. K. Ku, E. R. Miller, and M. T. Yokoyama. 1984. Effects of zeolite A or clinoptilolite in diets of growing swine. J. Anim. Sci. 59: 1536-1545.
Su, H. L., S. H. Lin, J. C. Wei, I. C. Pao, S. H. Chiao, C. C. Huang, S. Z. Lin, and J. J. Lin. 2011. Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria. PLoS One 6: e21125. doi: 10.1371/journal.pone.0021125
Su, D. L., Z. M. Lu, M. N. Shen, X. Li, and L. Y. Sun. 2012. Roles of pro-and anti-inflammatory cytokines in the pathogenesis of SLE. BioMed. Res. Int. 2012: 347147.
Song, M., Y. Liu, J. A. Soares, T. M. Che, O. Osuna, C. W. Maddox, and J. E. Pettigrew. 2012. Dietary clays alleviate diarrhea of weaned pigs. J. Anim. Sci. 90: 345-360.
Song, J., Y. L. Li, and H. C. Hu. 2013. Effects of copper-exchanged montmorillonite, as alternative to antibiotic, on diarrhea, intestinal permeability and proinflammatory cytokine of weanling pigs. Appl. Clay Sci. 77: 52-55.
Sutherland, M. A., B. L. Backus, and J. J. McGlone. 2014. Effects of transport at weaning on the behavior, physiology and performance of pigs. Animals 4: 657-669.
Subramaniam, M. D., and I. H. Kim. 2015. Clays as dietary supplements for swine: A review. J. Anim. Sci. Biotechnol. 6: 1-9. doi: 10.1186/s40104-015-0037-9
Thacker, P. A. 2003. Performance of growing-finishing pigs fed diets containing graded levels of biotite, an aluminosilicate clay. Asian-Australas. J Anim. Sci. 16: 1666-1672.
Trckova, M., H. Vondruskova, Z. Zraly, P. Alexa, J. Hamrik, V. Kummer, J. Maskova, V. Mrlik, K. Krizova, I. Slana, L. Leva, and I. Pavlik. 2009. The effect of kaolin feeding on efficiency, health status and course of diarrhoeal infections caused by enterotoxigenic Escherichia coli strains in weaned piglets. Vet. Med. 54: 47-63.
Tanabe, K., R. Matsushima-Nishiwaki, S. Yamaguchi, H. Iida, S. Dohi, and O. Kozawa. 2010. Mechanisms of tumor necrosis factor-α-induced interleukin-6 synthesis in glioma cells. J. Neuroinflamm. 7: 1-8. doi: 10.1186/1742-2094-7-16
Tanaka, T., M. Narazaki, and T. Kishimoto. 2014. IL-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspect. Biol. 6: a016295.
Tanaka, T., M. Narazaki, K. Masuda, and T. Kishimoto. 2016. Regulation of IL-6 in immunity and diseases. In: Ma, X. (eds) Regulation of cytokine gene expression in immunity and diseases. 79-88. doi: https://doi.org/10.1007/978-94-024-0921-5_4.
Tsikourkitoudi, V., B. Henriques-Normark, and G. A. Sotiriou. 2022. Inorganic nanoparticle engineering against bacterial infections. Curr. Opin. Chem. Eng. 38: 100872.
Tang, X., K. Xiong, R. Fang, and M. Li. 2022. Weaning stress and intestinal health of piglets: A review. Front. Immunol. 13: 1042778. doi: 10.3389/fimmu.2022.1042778
Uzal, F. A., M. A. Navarro, J. Asin, O. Boix, I. Ballarà-Rodriguez, and X. Gibert. 2023. Clostridial diarrheas in piglets: A review. Vet. Microbio. 280: 109691. doi: 10.1016/j.vetmic.2023.109691
Van Reeth, K., and H. Nauwynck. 2000. Proinflammatory cytokines and viral respiratory disease in pigs. Vet. Res. 31: 187-213.
Wong, D. L. F., T. Hald, P. J. Van Der Wolf, and M. Swanenburg. 2002. Epidemiology and control measures for salmonella in pigs and pork. Livest. Prod. Sci. 76: 215-222.
Wei, J. C., Y. T. Yen, H. L. Su, and J. J. Lin. 2011. Inhibition of bacterial growth by the exfoliated clays and observation of physical capturing mechanism. J. Phys. Chem. C. 115: 18770-18775.
Wang, J. P., F. Chi, and I. H. Kim. 2012. Effects of montmorillonite clay on growth performance, nutrient digestibility, vulva size, faecal microflora, and oxidative stress in weaning gilts challenged with zearalenone. Anim. Feed Sci. Technol. 178: 158-166.
Wlazło, Ł., M. Kwiecień, H. Bis-Wencel, W. Łopuszyński, G. Buszewicz, K. Karpińska, I. Rodzyń, M. Kasela, P. Sobczak, and B. Nowakowicz-Dębek. 2023. Assessment of health safety of pigs taking natural sorbents with feed. BMC Vet. Res. 19: 3. doi: 10.1186/s12917-022-03563-3
Xia M. S., C. H. Hu, Z. R. Xu, Y. Ye, Y. H. Zhou, and L. Xiong. 2004. Effects of copper-bearing montmorillonite (Cu-MMT) on Esherichia coli and diarrhea on weanling pigs. Asian-Australas. J. Anim. Sci. 17: 1712-1716.
Xia M. S., C. H. Hu, and Z. R. Xu. 2005. Effects of copper bearing montmorillonite on the growth performance, intestinal microflora and morphology of weanling pigs. Anim. Feed Sci. Technol. 118: 307-317.
Xiao, Y. T., W. H. Yan, Y. Cao, J. K. Yan, and W. Cai. 2016. Neutralization of IL-6 and TNF-α ameliorates intestinal permeability in DSS-induced colitis. Cytokine 83: 189-192.
Yu, D., Z. R. Xu, and X. G. Yang. 2005. Effects of lead and particulate montmorillonite on growth performance, hormone and organ weight in pigs. Asian Australas. J. Anim. Sci. 18: 1775-1779.
Yan, L., D. L. Han, Q. W. Meng, J. H. Lee, C. J. Park, and I. H. Kim. 2010. Effects of anion supplementation on growth performance, nutrient digestibility, meat quality and fecal noxious gas content in growing-finishing pigs. Asian-Australas. J. Anim Sci. 23: 1073-1079.
Yan, L., J. H. Lee, Q. W. Meng, and I. H. Kim. 2011. Evaluation of the Anion® supplementation on growth performance, nutrient digestibility, blood characteristics and faecal noxious gas content in weaning pigs. J. Appl. Anim. Res. 39: 36-40.
Zhou, H. 2016. Mixture of palygorskite and montmorillonite (Paly-Mont) and its adsorptive application for mycotoxins. Appl. Clay Sci. 131: 140-143.
Zhao, H. Y., X. B. Mao, B. Yu, J. He, P. Zheng, J. Yu, J. Q. Luo, Q. Y. Wang, and D. W. Chen. 2017. Excess of dietary montmorillonite impairs growth performance, liver function, and antioxidant capacity in starter pigs. J. Anim. Sci. 95: 2943-2951.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top