跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡博宇
研究生(外文):Po-Yu Tsai
論文名稱:工具機單軸進給系統運動精度之變異分析與優化研究
論文名稱(外文):Variation Analysis and Optimization of Motion Accuracy for A Single-axis Feed System of Machine Tools
指導教授:蔡志成蔡志成引用關係
指導教授(外文):Jhy-Cherng Tsai
口試委員:宋震國王郁仁陳冠辰
口試委員(外文):Cheng-Kuo SungYu-Jen WangGuan-Chen Chen
口試日期:2024-07-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:75
中文關鍵詞:工具機進給系統單軸進給系統運動精度運動元件誤差公差分析公差調配公差靈敏度分析
外文關鍵詞:machine tool feed systemsingle-axis feed systemmotion accuracymoving component errortolerance analysistolerance adjustmenttolerance sensitivity analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
工具機又稱工作母機,為機械設備與高精度產品製造之重要角色,為達成製造產品之精度,其工具機準確度極其重要。其中工具機由各軸向之進給軸搭配組裝而成,因此進給系統運動精度則為影響工具機準確度之關鍵,故有效評估並控制其運動精度為亟需解決之問題。本研究針對上述需求,對一單軸進給系統進行運動精度分析,並對不盡理想之結果探討其改善方法。
本研究以單軸進給系統為載台,提出一結合運動參數與幾何尺度與公差(GD&T)之精度變異累積理論,該方法以進給系統之公差設計為限制,並同時考慮其運動過程運動元件之誤差,進行運動精度變異範圍評估。研究結果顯示,進給系統於原公差設計下,Y軸向與Z軸向之運動精度變異範圍不佳,故需提出改善之方法。研究進一步對運動精度變異範圍進行優化設計,於原公差設計中根據公差靈敏度與貢獻度,逐步挑選出4項公差進行調整配置後,於Y軸向與Z軸向之精度變異範圍能有效降低46%與60%。持續限縮零組件公差雖可達成更高之精度,但使製造成本與難易度急遽上升,故進一步探討運動元件精度規格選用之影響。
研究接續於運動元件誤差進行改善探討,其運動元件誤差將直接影響運動過程之精度變化,該進給系統於原設計規格選用下,誤差累積變異模擬結果並不理想。因此透過調配元件精度規格進行模擬分析比較,結果顯示調整後相較於原設計能有效降低各運動位置誤差62.5%。研究結果顯示,本研究提出之方法能有效評估並控制其運動精度變異範圍,藉由此方法,在零件尚未生產組裝前,可於設計階段控制其精度變異範圍,亦即可及時配置合適之公差,並搭配適當之運動元件選用,即可掌握此單軸進給系統之運動精度。
Machine tools play an important role in the manufacturing of mechanical equipment and high-precision products. In order to achieve the precision of manufactured products, the accuracy of machine tools is extremely important. The machine tool is composed of feed axes in various axial directions. Therefore, the movement accuracy of the feed system is the key to the accuracy of the machine tool. Therefore, effectively evaluating and controlling its movement accuracy is an urgent problem that needs to be solved. In response to the above requirements, this study analyzes the motion accuracy of a single-axis feed system and explores improvement methods for unsatisfactory results.
This study uses a single-axis feed system as a platform to propose a precision variation accumulation theory that combines motion parameters and geometric scale and tolerance (GD&T). This method is limited by the tolerance design of the feed system and also considers its motion process moving Component errors are used to evaluate the variation range of motion accuracy. The research results show that under the original tolerance design of the feed system, the variation range of the movement accuracy in the Y-axis and Z-axis is not good, so it is necessary to propose ways to improve it. The study further optimized the design of the motion accuracy variation range. In the original tolerance design, based on tolerance sensitivity and contribution, four tolerances were gradually selected for adjustment and configuration. The accuracy variation range in the Y-axis and Z-axis can be effectively reduced by 46 % and 60%. Although higher precision can be achieved by continuously limiting component tolerances, the cost and difficulty of manufacturing will rise sharply. Therefore, the impact of the selection of precision specifications of moving components will be further explored.
The research continues with the improvement discussion on the error of moving components. The error of moving components will directly affect the accuracy change of the motion process. The simulation results of error accumulation variation of this feed system are not ideal when the original design specifications are selected. Therefore, simulation analysis and comparison were conducted by adjusting component accuracy specifications. The results showed that the adjustment can effectively reduce the error of each motion position by 62.5% compared with the original design. The research results show that the method proposed in this study can effectively evaluate and control the variation range of its motion accuracy. Through this method, the accuracy variation range of the parts can be controlled in the design stage before the parts are produced and assembled, which means that appropriate tolerances can be configured in a timely manner. , and with the appropriate selection of moving components, the motion accuracy of this single-axis feed system can be mastered.
摘要 i
ABSTRACT ii
目錄 iv
表目錄 vi
圖目錄 vii
符號表 ix
第一章 緒論 1
1.1 研究動機與目標 1
1.2 文獻回顧 2
1.2.1 公差分析 3
1.2.2 運動姿態誤差評估 3
1.2.3 精度變異範圍優化 4
1.3 研究方法與流程 5
1.4 本文架構 6
第二章 機構運動鏈與公差分析理論 7
2.1 機構運動鏈 7
2.2 公差拘束與公差種類 8
2.3 尺寸鏈與公差累積 9
2.4 公差累積與齊次座標轉換 10
2.5 公差貢獻度 11
2.6 公差靈敏度 12
第三章 結合運動參數與幾何尺度和公差之分析方法 13
3.1 公差分析與公差模型 14
3.2 公差累積路徑 16
3.3 機構運動鏈與運動參數 18
3.4 運動參數與公差累積路徑關係 19
3.5 結合運動參數與組裝關係之運動精度變異評估方法 20
第四章 單軸進給系統運動精度變異分析 23
4.1 建立產品架構與公差關聯網路 25
4.2 公差累積路徑與運動參數配置 29
4.3 運動行程精度變異分析 35
第五章 單軸進給系統運動精度變異優化 41
5.1 誤差源影響程度判斷 42
5.2 公差調整配置法 43
5.2.1 公差靈敏度與貢獻度分析 43
5.2.2 單軸進給系統公差調整配置 45
5.2.3 經公差調配後運動精度變異分析 47
5.3 經公差調配後誤差源影響程度分析 50
5.4 運動元件精度調配 51
5.4.1 運動元件誤差分析與調配 51
5.4.2 經運動元件調配後精度變異分析 52
5.5 案例探討 54
第六章 結論與未來展望 61
6.1 結論 61
6.2 未來展望 62
參考文獻 64
附錄A 單軸進給系統原設計於不同運動區段之精度變異範圍 66
附錄B 公差調配後不同運動區段之精度變異範圍比較 71
[1]O. R. Wade, “Tolerance Control in Design and Manufacturing”, Industrial Press, New York, 1967.
[2]O. Bjorke, “Computer-Aided Tolerancing”, 2nd ed. ASME Press, 1989.
[3]A. Trego, “A Comprehensive System for Modeling Variation in Mechanical Assemblies”, M.S. Thesis, Mechanical Engineering Department, Brigham Young University, 1993.
[4]B. Ramani, S. H. Cheraghi, J. M. Twomey, “CAD-Based Integrated Tolerancing System,” International Journal of Production Research, Vol.36, No.10, 1998, pp.2891-2910.
[5]P. Ji and J. B. Xue, “Process Tolerance Control in a 2D Angular Tolerance chart,” International Journal of Advanced Manufacturing Technology, Vol.20, No.9, 2002, pp.649-654.
[6]J.-C. Tsai, “Tolerance Reasoning for Concurrent CAD/CAM Systems”, PhD Dissertation, Stanford University, 1993.
[7]K.W. Chase, J. Gao, S.P. Magleby, “General 2-D tolerance analysis of mechanical assemblies with small kinematic adjustments”, Journal of Design and Manufacturing, Vol.5, 1995. pp263-274.
[8]蔡志成、鄭國德,“區間與統計公差正逆向四則運算方法之發展”,中國機械工程學會第12屆學術研討會論文集,1995,731-740頁,台灣嘉義。
[9]W.-T. Chang, L.-I. Wu, “Tolerance analysis and synthesis of cam-modulated linkages”, Mathematical and Computer Modelling, Vol.57, 2013, pp641-660.
[10]Z. Zhan, X. Zhang, Z. Jian, H. Zhang, “Error modelling and motion reliability analysis of a planar parallel manipulator with multiple uncertainties”, Mechanism and Machine Theory, Vol.124, 2018, pp55-72.
[11]徐翌恩、蔡志成,“機構之運動誤差與結構誤差分離之探討”,第24屆全國機構與機器設計學術研討會論文集,2021,論文編號84,台灣新竹。
[12]J.-C. Tsai, C.-Y Chang, Y.-J Wang, Y.-J. Chiu, “An Investigation on Assembly Accuracy Adjustment of a Parallel-Kinematic Machine at Multiple Positions”, In: Okada, M. (eds) Advances in Mechanism and Machine Science. Mechanisms and Machine Science, Vol. 149, 2023, pp.436-444.
[13]蔡志成、謝秉軒、楊文柔、賴鈞瑞,“雙軸迴轉工作台之公差設計分析與組裝精度調配”機械新刊,Vol.82(9),2023,45-55頁。
[14]蔡志成、侯靖男、曾柏昌,“公差分析在產品設計之應用”,中國機械工程學會第13屆學術研討會論文集(製造),1996,360-367頁,台灣台北。
[15]J.-C. Tsai, S.-R. Wu, “Tolerance Analysis and Re-distribution of A Machine Tool Spindle by Negative Tolerancing”, Procedia CIRP, Vol.10, 2013, pp267-270.
[16]K. Geetha, D. Ravindran, M. Siva Kumar, M.N. Islam, “Concurrent tolerance allocation and scheduling for complex assemblies”, Robotics and Computer-Integrated Manufacturing, Vol.35, 2015, pp84-95.
[17]黃柏澔、蔡志成、謝秉軒、王漢璋,“雙軸迴轉工作台之公差分析與調配” 中國機械工程學會第38屆全國學術研討會論文集,2021,C7-007,台灣台南。
[18]邱華翔、蔡志成、蔡博宇、楊宜霖、徐永京,“迴轉平台設計公差調配與組裝精度最佳化配置研究”第26屆全國機構與機器設計學術研討會論文集,2023,論文編號097,台灣雲林 。
[19]J.-C. Tsai, D.-N. Guo, and K.-D. Cheng, “Variational Kinematic Models for Geometric Tolerances and Fittings”, Proceedings of the 4th National Applied Mechanisms and Robotics Conference, 1995, AMR95-107.
[20]上銀科技,線性滑軌Linear Guideway,2024。檢自https://www.hiwin.tw
電子全文 電子全文(網際網路公開日期:20290822)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top