跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊祥妤
研究生(外文):Hsiang-Yu Yang
論文名稱:應用氣動人工肌肉開發具可變剛度的單側髖部外骨骼
論文名稱(外文):Unilateral Hip Exoskeleton with Variable Stiffness Using Pneumatic Artificial Muscle
指導教授:莊俊融
指導教授(外文):Jyun-Rong Zhuang
口試委員:李慶鴻李聯旺
口試委員(外文):Ching-Hung LeeLian-Wang Lee
口試日期:2024-07-10
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:46
中文關鍵詞:氣動人工肌肉節能可變剛度單側輔助髖部外骨骼步態識別
外文關鍵詞:Pneumatic artificial musclesVariable stiffnessUnilateral assistanceHip exoskeletonGait recognition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
日常生活中不可避免的會遇到斜坡和樓梯地形,這些任務會影響因疾病、傷害或年齡問題而運動能力下降人群的生活獨立性。許多研究證實外骨骼可以為他們提供輔助、增強運動能力。由於他們還有部分運動能力,因此根據需求選擇輔助患側更具經濟性。因此針對使用者的需求,使其能選擇輔助側、輔助條件來完成日常生活中的任務是必要的。本研究提出一種應用氣動人工肌肉(Pneumatic Artificial Muscle, PAM)致動器結合電纜傳動的可變剛度單側髖部外骨骼,其利用PAM作為彈性元件與馬達協同輔助人體,減少電源消耗使具備節能效益,延長設備的使用時間。為了找到使馬達能耗最小的剛度條件,本研究設計一個實驗平台,來找尋最佳輸入氣壓條件的PAM,並將其裝配於外骨骼上,驗證在真實的步行條件之節能效益。結果顯示在低剛度條件時可以降低52.3%的峰值功率,而中剛度條件可降低33.6%的平均功率,本研究證明所提出的PAM致動器可節省馬達能耗。為了在正確的步行相位中提供輔助,本研究提出了一種將單顆慣性測量單元(Inertial measurement unit,IMU)配備於大腿的相位識別方法。在實際使用中,本外骨骼可利用PAM的輸入氣壓和變剛度機構進行兩階段的剛度調整,搭配自動調心機構即可以根據個人需求、步行條件提升步行能力。
Slopes and stair terrain are unavoidable in daily life, and these tasks can affect the independence of people whose mobility has been reduced due to illness, injury or age. Many researches had confirmed that exoskeletons can provide assistance and enhance movement capabilities. Since they still have some mobility, it is more economical to assist the affected side based on their needs. Therefore, according to the needs of users, it is necessary to enable them to choose assistive side and conditions to complete tasks in daily life. This study proposes a variable-stiffness unilateral hip exoskeleton that uses Pneumatic Artificial Muscle (PAM) actuators combined with cable-driven transmission. We use PAM as an elastic element to cooperate with the motor to assist the human body, reducing power consumption and enabling energy saving benefits, extending the service life of the equipment. In order to find the stiffness conditions that minimize the motor's energy consumption, this study designed an experimental platform to discuss the impact of PAM input air pressure on the motor. Then the PAM using the optimal input air pressure conditions is used on the exoskeleton to verify its energy-saving effect under real walking conditions. The results show that applying this design, the low-stiffness PAM actuator can reduce the peak power by 52.3% and the medium-stiffness reduce average power by 33.6%. This study proves the proposed PAM actuator can decrease the energy consumption of motor. In order to provide assistance in correct walking phase, this study also proposes a phase recognition method that equips a single inertial measurement unit (IMU) on the thigh. In real application, this exoskeleton can use the input air pressure of the PAM and the variable stiffness mechanism to adjust the stiffness in two stages. With the automatic centering mechanism, the walking ability can be improved according to personal needs and walking conditions.
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 研究背景 1
1-1 高齡化社會 1
1-2 日常活動的髖部負荷 2
第二章 文獻回顧 5
2-1 主動式外骨骼 5
2-2 被動式外骨骼 8
2-3 半主動式外骨骼 10
2-4 對稱性輔助之重要性 13
2-5 文獻回顧總結 13
2-6 研究目的、原創性及貢獻 14
第三章 研究方法 15
3-1 步態相位的特徵 15
3-2 機構設計 19
3-2-1 變剛度機構 21
3-2-2 自動調心機構 22
3-3 PAM 23
3-3-1 PAM壓力評估 24
3-3-2 PAM力學分析 24
3-3-3 PAM拉伸量 26
3-3-4 變剛度機制 27
3-4 輔助機制 28
第四章 分析與結果討論 31
4-1 PAM輸出力 31
4-2 PAM剛度 32
4-3 最佳能耗剛度 33
4-4 真實步行條件下馬達性能實驗 37
第五章 結論與未來展望 40
參考文獻 41
[1]國家發展委員會「中華民國人口推估(2020至2070年)」. (國家發展委員會「中華民國人口推估(2020至2070年)」. https://www.ndc.gov.tw/nc_14813_36128
[2]Snijders, A. H., Van De Warrenburg, B. P., Giladi, N., & Bloem, B. R. (2007). Neurological gait disorders in elderly people: clinical approach and classification. The Lancet Neurology, 6(1), 63-74. https://doi.org/https://doi.org/10.1016/S1474-4422(06)70678-0
[3]Ashton-Miller, J. A. (2005). Age-associated changes in the biomechanics of gait and gait-related falls in older adults. Neurological Disease and Therapy, 73, 63.
[4]Moga, T. D., Nistor-Cseppento, C. D., Bungau, S. G., Tit, D. M., Sabau, A. M., Behl, T., Nechifor, A. C., Bungau, A. F., & Negrut, N. (2022). The effects of the ‘catabolic crisis’ on patients’ prolonged immobility after COVID-19 Infection. Medicina, 58(6), 828. https://doi.org/https://doi.org/10.3390/medicina58060828
[5]Menz, H. B., Lord, S. R., & Fitzpatrick, R. C. (2003). Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait & posture, 18(1), 35-46. https://doi.org/https://doi.org/10.1016/S0966-6362(02)00159-5
[6]Mansfield, P. J., & Neumann, D. A. (2018). Essentials of kinesiology for the physical therapist assistant e-book.Elsevier Health Sciences.
[7]Yang, Z., Qu, F., Liu, H., Jiang, L., Cui, C., & Rietdyk, S. (2019). The relative contributions of sagittal, frontal, and transverse joint works to self-paced incline and decline slope walking. Journal of biomechanics, 92, 35-44. https://doi.org/https://doi.org/10.1016/j.jbiomech.2019.05.027
[8]Lay, A. N., Hass, C. J., & Gregor, R. J. (2006). The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. Journal of biomechanics, 39(9), 1621-1628. https://doi.org/https://doi.org/10.1016/j.jbiomech.2005.05.005
[9]Franz, J. R., & Kram, R. (2014). Advanced age and the mechanics of uphill walking: a joint-level, inverse dynamic analysis. Gait & posture, 39(1), 135-140. https://doi.org/https://doi.org/10.1016/j.gaitpost.2013.06.012
[10]Sheehan, R. C., & Gottschall, J. S. (2012). At similar angles, slope walking has a greater fall risk than stair walking. Applied ergonomics, 43(3), 473-478. https://doi.org/https://doi.org/10.1016/j.apergo.2011.07.004
[11]Novak, A. C., Li, Q., Yang, S., & Brouwer, B. (2011). Mechanical energy transfers across lower limb segments during stair ascent and descent in young and healthy older adults. Gait & posture, 34(3), 384-390.
[12]Andriacchi, T., Andersson, G., Fermier, R., Stern, D., & Galante, J. (1980). A study of lower-limb mechanics during stair-climbing. JBJS, 62(5), 749-757. https://journals.lww.com/jbjsjournal/abstract/1980/62050/A_study_of_lower_limb_mechanics_during.8.aspx
[13]Riener, R., Rabuffetti, M., & Frigo, C. (2002). Stair ascent and descent at different inclinations. Gait & posture, 15(1), 32-44. https://doi.org/https://doi.org/10.1016/S0966-6362(01)00162-X
[14]Mansfield, P. J., & Neumann, D. A. (2023). Essentials of Kinesiology for the Physical Therapist Assistant E-Book.Elsevier Health Sciences.
[15]Lee, H.-J., Lee, S., Chang, W. H., Seo, K., Shim, Y., Choi, B.-O., Ryu, G.-H., & Kim, Y.-H. (2017). A wearable hip assist robot can improve gait function and cardiopulmonary metabolic efficiency in elderly adults. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 25(9), 1549-1557.
[16]Bajpai, A., Carrasquillo, C., Carlson, J., Park, J., Iyengar, D., Herrin, K., Young, A. J., & Mazumdar, A. (2023). Design and Validation of a Versatile High Torque Quasi-Direct Drive Hip Exoskeleton. IEEE/ASME Transactions on Mechatronics, 10.1109/TMECH.2023.3334795, 1. https://doi.org/10.1109/TMECH.2023.3334795
[17]Long, Y., & Peng, Y.-J. (2022). Design and Preliminary Testing for a Unilateral Hip Exoskeleton. 2022 International Conference on Advanced Robotics and Mechatronics (ICARM), https://doi.org/https://doi.org/10.1109/ICARM54641.2022.9959647
[18]Ishmael, M. K., Tran, M., & Lenzi, T. (2019). ExoProsthetics: Assisting above-knee amputees with a lightweight powered hip exoskeleton. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), https://doi.org/10.1109/ICORR.2019.8779412
[19]Xu, Y., Li, W., Chen, C., Chen, S., Wang, Z., Yang, F., Liu, Y., & Wu, X. (2023). A Portable Soft Exosuit to Assist Stair Climbing with Hip Flexion. Electronics, 12(11), 2467. https://doi.org/https://doi.org/10.3390/electronics12112467
[20]Song, J., Zhu, A., Tu, Y., Zou, J., & Zhang, X. (2023). Cable-Driven and Series Elastic Actuation Coupled for a Rigid–Flexible Spine-Hip Assistive Exoskeleton in Stoop–Lifting Event. IEEE/ASME Transactions on Mechatronics, 10.1109/TMECH.2023.3235756. https://doi.org/10.1109/TMECH.2023.3235756
[21]Yeh, T.-J., Wu, M.-J., Lu, T.-J., Wu, F.-K., & Huang, C.-R. (2010). Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis. Mechatronics, 20(6), 686-697. https://doi.org/https://doi.org/10.1016/j.mechatronics.2010.07.004
[22]Banyarani, P. B., Tarvirdizadeh, B., & Hadi, A. (2024). Design and fabrication of a soft wearable robot using a novel pleated fabric pneumatic artificial muscle (pfPAM) to assist walking. Sensors and Actuators A: Physical, 370, 115278. https://doi.org/https://doi.org/10.1016/j.sna.2024.115278
[23]Ding, Y., Galiana, I., Siviy, C., Panizzolo, F. A., & Walsh, C. (2016). IMU-based iterative control for hip extension assistance with a soft exosuit. 2016 IEEE International Conference on Robotics and Automation (ICRA), https://doi.org/10.1109/ICRA.2016.7487530
[24]Ye, X., Chen, C., Shi, Y., Chen, L., Wang, Z., Zhang, Z., Liu, Y., & Wu, X. (2021). A time division multiplexing inspired lightweight soft exoskeleton for hip and ankle joint assistance. Micromachines, 12(10), 1150. https://doi.org/https://doi.org/10.3390/mi12101150
[25]ACSIVE.Available online: https://www.imasengiken.co.jp/product/acsive/ (accessed on 3 July 2024)
[26]Zhou, T., Xiong, C., Zhang, J., Hu, D., Chen, W., & Huang, X. (2021). Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton. Journal of NeuroEngineering and Rehabilitation, 18(1), 1-15. https://link.springer.com/article/10.1186/s12984-021-00893-5
[27]Zhou, L., Chen, W., Chen, W., Bai, S., Zhang, J., & Wang, J. (2020). Design of a passive lower limb exoskeleton for walking assistance with gravity compensation. Mechanism and Machine Theory, 150, 103840. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.103840
[28]Nasiri, R., Ahmadi, A., & Ahmadabadi, M. N. (2018). Reducing the energy cost of human running using an unpowered exoskeleton. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 26(10), 2026-2032. https://doi.org/10.1109/TNSRE.2018.2872889
[29]Zhou, T., Xiong, C., Zhang, J., Chen, W., & Huang, X. (2021). Regulating metabolic energy among joints during human walking using a multiarticular unpowered exoskeleton. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 29, 662-672. https://doi.org/10.1109/TNSRE.2021.3065389
[30]Wang, Y., Diao, Y., Ning, Y., Li, G., & Zhao, G. (2021). Simulation design of flexible Unpowerd lower limb exoskeleton. 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), https://doi.org/10.1109/RCAR52367.2021.9517465
[31]Auberger, R., Riener, R., Russold, M. F., & Dietl, H. (2019). Energy recuperation at the hip joint for paraplegic walking: Interaction between patient and supportive device. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), https://doi.org/10.1109/ICORR.2019.8779491
[32]Hu, B., Liu, F., Cheng, K., Chen, W., Shan, X., & Yu, H. (2023). Stiffness optimal modulation of a variable stiffness energy storage hip exoskeleton and experiments on its assistance effect. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 31, 1045-1055. https://doi.org/10.1109/TNSRE.2023.3236256
[33]Ishmael, M. K., Archangeli, D., & Lenzi, T. (2022). A powered hip exoskeleton with high torque density for walking, running, and stair ascent. IEEE/ASME Transactions on Mechatronics, 27(6), 4561-4572. https://doi.org/10.1109/TMECH.2022.3159506
[34]Masood, J., Ortiz, J., Fernández, J., Mateos, L. A., & Caldwell, D. G. (2016). Mechanical design and analysis of light weight hip joint parallel elastic actuator for industrial exoskeleton. 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), https://doi.org/10.1109/BIOROB.2016.7523696
[35]Zoss, A. B., Kazerooni, H., & Chu, A. (2006). Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics, 11(2), 128-138. https://doi.org/10.1109/TMECH.2006.871087
[36]Kang, I., Peterson, R. R., Herrin, K. R., Mazumdar, A., & Young, A. J. (2023). Design and validation of a torque-controllable series elastic actuator-based hip exoskeleton for dynamic locomotion. Journal of Mechanisms and Robotics, 15(2), 021007. https://doi.org/https://doi.org/10.1115/1.4054724
[37]Rouse, E. J., Mooney, L. M., Martinez-Villalpando, E. C., & Herr, H. M. (2013). Clutchable series-elastic actuator: Design of a robotic knee prosthesis for minimum energy consumption. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), https://doi.org/10.1109/ICORR.2013.6650383
[38]Li, Z., Bai, S., Madsen, O., Chen, W., & Zhang, J. (2020). Design, modeling and testing of a compact variable stiffness mechanism for exoskeletons. Mechanism and Machine Theory, 151, 103905. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.103905
[39]Cestari, M., Sanz-Merodio, D., Arevalo, J. C., & Garcia, E. (2014). An adjustable compliant joint for lower-limb exoskeletons. IEEE/ASME Transactions on Mechatronics, 20(2), 889-898. https://doi.org/https://doi.org/10.1109/TMECH.2014.2324036
[40]Häufle, D. F., Taylor, M., Schmitt, S., & Geyer, H. (2012). A clutched parallel elastic actuator concept: Towards energy efficient powered legs in prosthetics and robotics. 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob),
[41]Verstraten, T., Beckerle, P., Furnémont, R., Mathijssen, G., Vanderborght, B., & Lefeber, D. (2016). Series and parallel elastic actuation: Impact of natural dynamics on power and energy consumption. Mechanism and Machine Theory, 102, 232-246.
[42]Yesilevskiy, Y., Xi, W., & Remy, C. D. (2015). A comparison of series and parallel elasticity in a monoped hopper. 2015 IEEE International Conference on Robotics and Automation (ICRA), https://doi.org/10.1109/ICRA.2015.7139304
[43]da Cunha-Filho, I. T., Henson, H., Qureshy, H., Williams, A. L., Holmes, S. A., & Protas, E. J. (2003). Differential responses to measures of gait performance among healthy and neurologically impaired individuals. Archives of physical medicine and rehabilitation, 84(12), 1774-1779. https://doi.org/https://doi.org/10.1016/S0003-9993(03)00373-3
[44]Rice, J., & Seeley, M. K. (2010). An investigation of lower-extremity functional asymmetry for non-preferred able-bodied walking speeds. International journal of exercise science, 3(4), 182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738871/
[45]Malcolm, P., Galle, S., Van den Berghe, P., & De Clercq, D. (2018). Exoskeleton assistance symmetry matters: unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance. Journal of NeuroEngineering and Rehabilitation, 15, 1-11. https://doi.org/https://doi.org/10.1186/s12984-018-0381-z
[46]Price, M., Abdikadirova, B., Locurto, D., Jaramillo, J. M., Cline, N., Hoogkamer, W., & Huber, M. E. (2022). Unilateral stiffness modulation with a robotic hip exoskeleton elicits adaptation during gait. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), https://doi.org/10.1109/IROS47612.2022.9981067
[47]Prasanth, H., Caban, M., Keller, U., Courtine, G., Ijspeert, A., Vallery, H., & Von Zitzewitz, J. (2021). Wearable sensor-based real-time gait detection: A systematic review. Sensors, 21(8), 2727. https://doi.org/https://doi.org/10.3390/s21082727
[48]Shen, X. (2010). Nonlinear model-based control of pneumatic artificial muscle servo systems. Control Engineering Practice, 18(3), 311-317. https://doi.org/https://doi.org/10.1016/j.conengprac.2009.11.010
[49]李冠頴, & Li, K.-Y. (2022). Design and Control of Upper-Limb Exoskeleton Assist System Driven by Pneumatic Actuators
[50]Budynas, R. G., & Nisbett, J. K. (2011). Shigley's mechanical engineering design (Vol. 9). McGraw-Hill New York.
[51]McIntosh, A. S., Beatty, K. T., Dwan, L. N., & Vickers, D. R. (2006). Gait dynamics on an inclined walkway. Journal of biomechanics, 39(13), 2491-2502. https://doi.org/https://doi.org/10.1016/j.jbiomech.2005.07.025
[52]Doumit, M., & Leclair, J. (2017). Development and testing of stiffness model for pneumatic artificial muscle. International Journal of Mechanical Sciences, 120, 30-41. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2016.11.015
[53]Winter, D. A. (2009). Biomechanics and motor control of human movement.John wiley & sons.
[54]Plooij, M., Wisse, M., & Vallery, H. (2016). Reducing the energy consumption of robots using the bidirectional clutched parallel elastic actuator. IEEE Transactions on Robotics, 32(6), 1512-1523. https://doi.org/10.1109/TRO.2016.2604496
[55]Galle, S., Malcolm, P., Derave, W., & De Clercq, D. (2015). Uphill walking with a simple exoskeleton: Plantarflexion assistance leads to proximal adaptations. Gait & posture, 41(1), 246-251. https://doi.org/https://doi.org/10.1016/j.gaitpost.2014.10.015
[56]Chen, Q., Guo, S., Wang, J., Wang, J., Zhang, D., & Jin, S. (2022). Biomechanical and physiological evaluation of biologically-inspired hip assistance with belt-type soft exosuits. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 30, 2802-2814. https://doi.org/10.1109/TNSRE.2022.3209337
電子全文 電子全文(網際網路公開日期:20290827)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top