|
[1]國家發展委員會「中華民國人口推估(2020至2070年)」. (國家發展委員會「中華民國人口推估(2020至2070年)」. https://www.ndc.gov.tw/nc_14813_36128 [2]Snijders, A. H., Van De Warrenburg, B. P., Giladi, N., & Bloem, B. R. (2007). Neurological gait disorders in elderly people: clinical approach and classification. The Lancet Neurology, 6(1), 63-74. https://doi.org/https://doi.org/10.1016/S1474-4422(06)70678-0 [3]Ashton-Miller, J. A. (2005). Age-associated changes in the biomechanics of gait and gait-related falls in older adults. Neurological Disease and Therapy, 73, 63. [4]Moga, T. D., Nistor-Cseppento, C. D., Bungau, S. G., Tit, D. M., Sabau, A. M., Behl, T., Nechifor, A. C., Bungau, A. F., & Negrut, N. (2022). The effects of the ‘catabolic crisis’ on patients’ prolonged immobility after COVID-19 Infection. Medicina, 58(6), 828. https://doi.org/https://doi.org/10.3390/medicina58060828 [5]Menz, H. B., Lord, S. R., & Fitzpatrick, R. C. (2003). Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait & posture, 18(1), 35-46. https://doi.org/https://doi.org/10.1016/S0966-6362(02)00159-5 [6]Mansfield, P. J., & Neumann, D. A. (2018). Essentials of kinesiology for the physical therapist assistant e-book.Elsevier Health Sciences. [7]Yang, Z., Qu, F., Liu, H., Jiang, L., Cui, C., & Rietdyk, S. (2019). The relative contributions of sagittal, frontal, and transverse joint works to self-paced incline and decline slope walking. Journal of biomechanics, 92, 35-44. https://doi.org/https://doi.org/10.1016/j.jbiomech.2019.05.027 [8]Lay, A. N., Hass, C. J., & Gregor, R. J. (2006). The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. Journal of biomechanics, 39(9), 1621-1628. https://doi.org/https://doi.org/10.1016/j.jbiomech.2005.05.005 [9]Franz, J. R., & Kram, R. (2014). Advanced age and the mechanics of uphill walking: a joint-level, inverse dynamic analysis. Gait & posture, 39(1), 135-140. https://doi.org/https://doi.org/10.1016/j.gaitpost.2013.06.012 [10]Sheehan, R. C., & Gottschall, J. S. (2012). At similar angles, slope walking has a greater fall risk than stair walking. Applied ergonomics, 43(3), 473-478. https://doi.org/https://doi.org/10.1016/j.apergo.2011.07.004 [11]Novak, A. C., Li, Q., Yang, S., & Brouwer, B. (2011). Mechanical energy transfers across lower limb segments during stair ascent and descent in young and healthy older adults. Gait & posture, 34(3), 384-390. [12]Andriacchi, T., Andersson, G., Fermier, R., Stern, D., & Galante, J. (1980). A study of lower-limb mechanics during stair-climbing. JBJS, 62(5), 749-757. https://journals.lww.com/jbjsjournal/abstract/1980/62050/A_study_of_lower_limb_mechanics_during.8.aspx [13]Riener, R., Rabuffetti, M., & Frigo, C. (2002). Stair ascent and descent at different inclinations. Gait & posture, 15(1), 32-44. https://doi.org/https://doi.org/10.1016/S0966-6362(01)00162-X [14]Mansfield, P. J., & Neumann, D. A. (2023). Essentials of Kinesiology for the Physical Therapist Assistant E-Book.Elsevier Health Sciences. [15]Lee, H.-J., Lee, S., Chang, W. H., Seo, K., Shim, Y., Choi, B.-O., Ryu, G.-H., & Kim, Y.-H. (2017). A wearable hip assist robot can improve gait function and cardiopulmonary metabolic efficiency in elderly adults. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 25(9), 1549-1557. [16]Bajpai, A., Carrasquillo, C., Carlson, J., Park, J., Iyengar, D., Herrin, K., Young, A. J., & Mazumdar, A. (2023). Design and Validation of a Versatile High Torque Quasi-Direct Drive Hip Exoskeleton. IEEE/ASME Transactions on Mechatronics, 10.1109/TMECH.2023.3334795, 1. https://doi.org/10.1109/TMECH.2023.3334795 [17]Long, Y., & Peng, Y.-J. (2022). Design and Preliminary Testing for a Unilateral Hip Exoskeleton. 2022 International Conference on Advanced Robotics and Mechatronics (ICARM), https://doi.org/https://doi.org/10.1109/ICARM54641.2022.9959647 [18]Ishmael, M. K., Tran, M., & Lenzi, T. (2019). ExoProsthetics: Assisting above-knee amputees with a lightweight powered hip exoskeleton. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), https://doi.org/10.1109/ICORR.2019.8779412 [19]Xu, Y., Li, W., Chen, C., Chen, S., Wang, Z., Yang, F., Liu, Y., & Wu, X. (2023). A Portable Soft Exosuit to Assist Stair Climbing with Hip Flexion. Electronics, 12(11), 2467. https://doi.org/https://doi.org/10.3390/electronics12112467 [20]Song, J., Zhu, A., Tu, Y., Zou, J., & Zhang, X. (2023). Cable-Driven and Series Elastic Actuation Coupled for a Rigid–Flexible Spine-Hip Assistive Exoskeleton in Stoop–Lifting Event. IEEE/ASME Transactions on Mechatronics, 10.1109/TMECH.2023.3235756. https://doi.org/10.1109/TMECH.2023.3235756 [21]Yeh, T.-J., Wu, M.-J., Lu, T.-J., Wu, F.-K., & Huang, C.-R. (2010). Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis. Mechatronics, 20(6), 686-697. https://doi.org/https://doi.org/10.1016/j.mechatronics.2010.07.004 [22]Banyarani, P. B., Tarvirdizadeh, B., & Hadi, A. (2024). Design and fabrication of a soft wearable robot using a novel pleated fabric pneumatic artificial muscle (pfPAM) to assist walking. Sensors and Actuators A: Physical, 370, 115278. https://doi.org/https://doi.org/10.1016/j.sna.2024.115278 [23]Ding, Y., Galiana, I., Siviy, C., Panizzolo, F. A., & Walsh, C. (2016). IMU-based iterative control for hip extension assistance with a soft exosuit. 2016 IEEE International Conference on Robotics and Automation (ICRA), https://doi.org/10.1109/ICRA.2016.7487530 [24]Ye, X., Chen, C., Shi, Y., Chen, L., Wang, Z., Zhang, Z., Liu, Y., & Wu, X. (2021). A time division multiplexing inspired lightweight soft exoskeleton for hip and ankle joint assistance. Micromachines, 12(10), 1150. https://doi.org/https://doi.org/10.3390/mi12101150 [25]ACSIVE.Available online: https://www.imasengiken.co.jp/product/acsive/ (accessed on 3 July 2024) [26]Zhou, T., Xiong, C., Zhang, J., Hu, D., Chen, W., & Huang, X. (2021). Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton. Journal of NeuroEngineering and Rehabilitation, 18(1), 1-15. https://link.springer.com/article/10.1186/s12984-021-00893-5 [27]Zhou, L., Chen, W., Chen, W., Bai, S., Zhang, J., & Wang, J. (2020). Design of a passive lower limb exoskeleton for walking assistance with gravity compensation. Mechanism and Machine Theory, 150, 103840. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.103840 [28]Nasiri, R., Ahmadi, A., & Ahmadabadi, M. N. (2018). Reducing the energy cost of human running using an unpowered exoskeleton. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 26(10), 2026-2032. https://doi.org/10.1109/TNSRE.2018.2872889 [29]Zhou, T., Xiong, C., Zhang, J., Chen, W., & Huang, X. (2021). Regulating metabolic energy among joints during human walking using a multiarticular unpowered exoskeleton. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 29, 662-672. https://doi.org/10.1109/TNSRE.2021.3065389 [30]Wang, Y., Diao, Y., Ning, Y., Li, G., & Zhao, G. (2021). Simulation design of flexible Unpowerd lower limb exoskeleton. 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), https://doi.org/10.1109/RCAR52367.2021.9517465 [31]Auberger, R., Riener, R., Russold, M. F., & Dietl, H. (2019). Energy recuperation at the hip joint for paraplegic walking: Interaction between patient and supportive device. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), https://doi.org/10.1109/ICORR.2019.8779491 [32]Hu, B., Liu, F., Cheng, K., Chen, W., Shan, X., & Yu, H. (2023). Stiffness optimal modulation of a variable stiffness energy storage hip exoskeleton and experiments on its assistance effect. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 31, 1045-1055. https://doi.org/10.1109/TNSRE.2023.3236256 [33]Ishmael, M. K., Archangeli, D., & Lenzi, T. (2022). A powered hip exoskeleton with high torque density for walking, running, and stair ascent. IEEE/ASME Transactions on Mechatronics, 27(6), 4561-4572. https://doi.org/10.1109/TMECH.2022.3159506 [34]Masood, J., Ortiz, J., Fernández, J., Mateos, L. A., & Caldwell, D. G. (2016). Mechanical design and analysis of light weight hip joint parallel elastic actuator for industrial exoskeleton. 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), https://doi.org/10.1109/BIOROB.2016.7523696 [35]Zoss, A. B., Kazerooni, H., & Chu, A. (2006). Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics, 11(2), 128-138. https://doi.org/10.1109/TMECH.2006.871087 [36]Kang, I., Peterson, R. R., Herrin, K. R., Mazumdar, A., & Young, A. J. (2023). Design and validation of a torque-controllable series elastic actuator-based hip exoskeleton for dynamic locomotion. Journal of Mechanisms and Robotics, 15(2), 021007. https://doi.org/https://doi.org/10.1115/1.4054724 [37]Rouse, E. J., Mooney, L. M., Martinez-Villalpando, E. C., & Herr, H. M. (2013). Clutchable series-elastic actuator: Design of a robotic knee prosthesis for minimum energy consumption. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), https://doi.org/10.1109/ICORR.2013.6650383 [38]Li, Z., Bai, S., Madsen, O., Chen, W., & Zhang, J. (2020). Design, modeling and testing of a compact variable stiffness mechanism for exoskeletons. Mechanism and Machine Theory, 151, 103905. https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.103905 [39]Cestari, M., Sanz-Merodio, D., Arevalo, J. C., & Garcia, E. (2014). An adjustable compliant joint for lower-limb exoskeletons. IEEE/ASME Transactions on Mechatronics, 20(2), 889-898. https://doi.org/https://doi.org/10.1109/TMECH.2014.2324036 [40]Häufle, D. F., Taylor, M., Schmitt, S., & Geyer, H. (2012). A clutched parallel elastic actuator concept: Towards energy efficient powered legs in prosthetics and robotics. 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), [41]Verstraten, T., Beckerle, P., Furnémont, R., Mathijssen, G., Vanderborght, B., & Lefeber, D. (2016). Series and parallel elastic actuation: Impact of natural dynamics on power and energy consumption. Mechanism and Machine Theory, 102, 232-246. [42]Yesilevskiy, Y., Xi, W., & Remy, C. D. (2015). A comparison of series and parallel elasticity in a monoped hopper. 2015 IEEE International Conference on Robotics and Automation (ICRA), https://doi.org/10.1109/ICRA.2015.7139304 [43]da Cunha-Filho, I. T., Henson, H., Qureshy, H., Williams, A. L., Holmes, S. A., & Protas, E. J. (2003). Differential responses to measures of gait performance among healthy and neurologically impaired individuals. Archives of physical medicine and rehabilitation, 84(12), 1774-1779. https://doi.org/https://doi.org/10.1016/S0003-9993(03)00373-3 [44]Rice, J., & Seeley, M. K. (2010). An investigation of lower-extremity functional asymmetry for non-preferred able-bodied walking speeds. International journal of exercise science, 3(4), 182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738871/ [45]Malcolm, P., Galle, S., Van den Berghe, P., & De Clercq, D. (2018). Exoskeleton assistance symmetry matters: unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance. Journal of NeuroEngineering and Rehabilitation, 15, 1-11. https://doi.org/https://doi.org/10.1186/s12984-018-0381-z [46]Price, M., Abdikadirova, B., Locurto, D., Jaramillo, J. M., Cline, N., Hoogkamer, W., & Huber, M. E. (2022). Unilateral stiffness modulation with a robotic hip exoskeleton elicits adaptation during gait. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), https://doi.org/10.1109/IROS47612.2022.9981067 [47]Prasanth, H., Caban, M., Keller, U., Courtine, G., Ijspeert, A., Vallery, H., & Von Zitzewitz, J. (2021). Wearable sensor-based real-time gait detection: A systematic review. Sensors, 21(8), 2727. https://doi.org/https://doi.org/10.3390/s21082727 [48]Shen, X. (2010). Nonlinear model-based control of pneumatic artificial muscle servo systems. Control Engineering Practice, 18(3), 311-317. https://doi.org/https://doi.org/10.1016/j.conengprac.2009.11.010 [49]李冠頴, & Li, K.-Y. (2022). Design and Control of Upper-Limb Exoskeleton Assist System Driven by Pneumatic Actuators [50]Budynas, R. G., & Nisbett, J. K. (2011). Shigley's mechanical engineering design (Vol. 9). McGraw-Hill New York. [51]McIntosh, A. S., Beatty, K. T., Dwan, L. N., & Vickers, D. R. (2006). Gait dynamics on an inclined walkway. Journal of biomechanics, 39(13), 2491-2502. https://doi.org/https://doi.org/10.1016/j.jbiomech.2005.07.025 [52]Doumit, M., & Leclair, J. (2017). Development and testing of stiffness model for pneumatic artificial muscle. International Journal of Mechanical Sciences, 120, 30-41. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2016.11.015 [53]Winter, D. A. (2009). Biomechanics and motor control of human movement.John wiley & sons. [54]Plooij, M., Wisse, M., & Vallery, H. (2016). Reducing the energy consumption of robots using the bidirectional clutched parallel elastic actuator. IEEE Transactions on Robotics, 32(6), 1512-1523. https://doi.org/10.1109/TRO.2016.2604496 [55]Galle, S., Malcolm, P., Derave, W., & De Clercq, D. (2015). Uphill walking with a simple exoskeleton: Plantarflexion assistance leads to proximal adaptations. Gait & posture, 41(1), 246-251. https://doi.org/https://doi.org/10.1016/j.gaitpost.2014.10.015 [56]Chen, Q., Guo, S., Wang, J., Wang, J., Zhang, D., & Jin, S. (2022). Biomechanical and physiological evaluation of biologically-inspired hip assistance with belt-type soft exosuits. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 30, 2802-2814. https://doi.org/10.1109/TNSRE.2022.3209337
|