[1]Tong, R. K., Ng, M. F., & Li, L. S. “Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial”. Arch Phys Med Rehabil, 87(10)(2006), 1298-1304. https://doi.org/10.1016/j.apmr.2006.06.016.
[2]三階段人口(占總人口比率),國家發展委員會,https://www.ndc.gov.tw/Content_List.aspx?n=0F11EF2482E76C5,檢自2023.06.30
[3]Rowat, A., Pollock, A., St George, B., Cowey, E., Booth, J., & Lawrence, M.“Top 10 research priorities relating to stroke nursing: A rigorous approach to establish a national nurse‐led research agenda”, Journal of Advanced Nursing, 72(11) (2016), 2831-2843. https://doi.org/10.1111/jan.13048.
[4]Cumming, T.B., Packer, M., Kramer, S.F., English, C. “The prevalence of fatigue after stroke: a systematic review and meta-analysis”, Int. J. Stroke 11 (9) (2016), 968 – 977. https://doi.org/10.1177/1747493016669861.
[5]Vuletić V, Lezaić Z, Morović S. Post-stroke fatigue. Acta Clin Croat. 506(3) (2011), 341-344. https://hrcak.srce.hr/84092.
[6]de Groot, M.H., Phillips, S.J., Eskes, G.A. Fatigue associated with stroke and other neurologic conditions: implications for stroke rehabilitation. Arch. Phys. Med. Rehabil. 84 (11) (2003), 1714 – 1720. https://doi.org/10.1053/S0003-9993(03)00346-0.
[7]de Bruijn, M.A.A.M., Synhaeve, N.E., van Rijsbergen, M.W.A., de Leeuw, F.-E., Mark, R. E., Jansen, B.P.W., de Kort, P.L.M. Quality of life after young ischemic stroke of mild severity is mainly influenced by psychological factors. J. Stroke Cerebrovasc. Dis. 24 (10) (2015), 2183 – 2188. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.04.040.
[8]Glader, E.-L., Stegmayr, B., Asplund, K. Poststroke fatigue: a 2-year follow-up study of stroke patients in Sweden. Stroke 33 (5) (2002), 1327 – 1333. https://doi.org/10.1161/01.STR.0000014248.28711.D6.
[9]Kristine M. Ulrichsen et al, Structural brain disconnectivity mapping of post-stroke fatigue, NeuroImag:Clinical, 30(2021). https://doi.org/10.1016/j.nicl.2021.102635.
[10]Darnai, G., Matuz, A., Alhour, H. A., Perlaki, G., Orsi, G., Arató, Á., Szente, A., Áfra, E., Nagy, S., Janszky, J. & Csathó, Á. The neural correlates of mental fatigue and reward processing: A task-based fMRI study. NeuroImage, 265(2023), 119812. https://doi.org/10.1016/j.neuroimage.2022.119812.
[11]Mehmood, I., Li, H., Umer, W., Arsalan, A., Shakeel, M. S., & Anwer, S. Validity of facial features’ geometric measurements for real-time assessment of mental fatigue in construction equipment operators. Advanced Engineering Informatics, 54 (2022), 101777. https://doi.org/10.1016/j.aei.2022.101777.
[12]Ponce-Bordón, J. C., García-Calvo, T., López-Gajardo, M. A., Díaz, J., & González-Ponce, I. How does the manipulation of time pressure during soccer tasks influence physical load and mental fatigue? Psychology of Sport and Exercise, (2022), 102253. https://doi.org/10.1016/j.psychsport.2022.102253.
[13]Ye, C., Yin, Z., Zhao, M., Tian, Y., & Sun, Z. Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network. Biomedical Signal Processing and Control, 72 (2022), 103360. https://doi.org/10.1016/j.bspc.2021.103360.
[14]Melo, H. M., Nascimento, L. M., de Bem Alves, A. C., Walz, R., & Takase, E. N2 event-related potential component is associated with cardiac autonomic tone regulation during mental fatigue. Physiology & Behavior, 241 (2021), 113591. https://doi.org/10.1016/j.physbeh.2021.113591.
[15]Pattyn, N., Van Cutsem, J., Dessy, E., & Mairesse, O. Bridging exercise science, cognitive psychology, and medical practice: Is “cognitive fatigue” a remake of “the emperor’s new clothes” ?. Frontiers in Psychology, 9 (2018), 1246. https://doi.org/10.3389/fpsyg.2018.01246.
[16]Mizuno, K., Tanaka, M., Yamaguti, K., Kajimoto, O., Kuratsune, H., & Watanabe, Y. Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behavioral and brain functions, 7(1) (2011), 1-7. https://doi.org/10.1186/1744-9081-7-17.
[17]Chen, K., Li, Z., Ai, Q., Liu, Q., & Wang, L. An improved CNN model based on fused time-frequency features for mental fatigue detection in BCIs. In 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA) (2021, July) (pp. 1-5). IEEE. https://doi.org/10.1109/IISA52424.2021.9555518.
[18]Chai, R., Tran, Y., Naik, G. R., Nguyen, T. N., Ling, S. H., Craig, A., & Nguyen, H. T. Classification of EEG based-mental fatigue using principal component analysis and Bayesian neural network. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)(2016, August)(pp. 4654-4657). IEEE. https://doi.org/10.1109/EMBC.2016.7591765.
[19]Dubravac, M., & Meier, B. Overshooting cognitive control adjustments in older age: Evidence from conflict-and error-related slowing in the Stroop, Simon, and flanker tasks. Acta psychologica, 234 (2023), 103874. https://doi.org/10.1016/j.actpsy.2023.103874.
[20]Beringer, M., Wacker, J., & Recio, G. Deliberate control of facial expressions in a go/no-go task: An ERP study. Acta Psychologica, 230 (2022), 103773. https://doi.org/10.1016/j.actpsy.2022.103773.
[21]Caton, R. The electric currents of the brain. Br Med J, 2(1875), 278. https://doi.org/10.1080/00029238.1970.11080764.
[22]Gloor, P. Hans Berger on electroencephalography. American Journal of EEG Technology, 9(1) (1969), 1-8. https://doi.org/10.1080/00029238.1969.11080728.
[23]Hayward, R. The tortoise and the love-machine: Grey Walter and the politics of electroencephalography. Science in Context, 14(4) (2001), 615-641. https://doi.org/10.1017/S0269889701000278.
[24]Jeon, J., & Cai, H. Multi-class classification of construction hazards via cognitive states assessment using wearable EEG. Advanced Engineering Informatics, 53 (2022), 101646. https://doi.org/10.1016/j.aei.2022.101646.
[25]Kobayashi, K., James, C. J., Yoshinaga, H., Ohtsuka, Y., & Gotman, J. The electroencephalogram through a software microscope: non-invasive localization and visualization of epileptic seizure activity from inside the brain. Clinical neurophysiology, 111(1) (2000), 134-149. https://doi.org/10.1016/S1388-2457(99)00202-3
[26]Gu, X., Cao, Z., Jolfaei, A., Xu, P., Wu, D., Jung, T. P., & Lin, C. T. EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM transactions on computational biology and bioinformatics, 18(5) (2021), 1645-1666. https://doi.org/10.1109/TCBB.2021.3052811.
[27]Raghu, S., Sriraam, N., Temel, Y., Rao, S. V., Hegde, A. S., & Kubben, P. L. Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier. Computers in biology and medicine, 110(2019), 127-143. https://doi.org/10.1016/j.compbiomed.2019.05.016.
[28]Cao, Z., Chuang, C. H., King, J. K., & Lin, C. T. Multi-channel EEG recordings during a sustained-attention driving task. Scientific Data, 6(1) (2019), 19. https://doi.org/10.1038/s41597-019-0027-4.
[29]黃浩權(2017)。基於多通道濾波共同空間模式之憂鬱症腦波分析。﹝碩士論文。國立臺北科技大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/9x26c7。[30]La Rocca, D., Campisi, P., Vegso, B., Cserti, P., Kozmann, G., Babiloni, F., & Fallani, F. D. V. Human brain distinctiveness based on EEG spectral coherence connectivity. IEEE transactions on Biomedical Engineering, 61(9) (2014), 2406-2412. https://doi.org/10.1109/TBME.2014.2317881.
[31]Raghu, S., Sriraam, N., Kumar, G. P., & Hegde, A. S. A novel approach for real-time recognition of epileptic seizures using minimum variance modified fuzzy entropy. IEEE Transactions on Biomedical Engineering, 65(11) (2018), 2612-2621. https://doi.org/10.1109/TBME.2018.2810942.
[32]宋加力(2021)。區分重度憂鬱和焦慮症狀共病患者與健康對照者的腦電圖機器學習方法。﹝博士論文。國立中山大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/yn4dxb。[33]Lal S. K., Craig A. A critical review of the psychophysiology of driver fatigue. Biological Psychology, 55(3) (2001), 173-194. https://doi.org/10.1016/S0301-0511(00)00085-5.
[34]Lal S. K., Craig A. Electroencephalography activity associated with driver fatigue: implications for a fatigue countermeasure device. Journal of Psychophysiology, 15(3) (2001), 183-189. https://doi.org/10.1027/0269-8803.15.3.183.
[35]Cajochen, C., Brunner, D. P., Krauchi, K., Graw, P. & Wirz-Justice, A. Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep, 18(10) (1995), 890–894. https://doi.org/10.1093/sleep/18.10.890.
[36]Strijkstra, A. M., Beersma, D. G. M., Drayer, B., Halbesma, N., Daan, S. Subjective sleepiness correlates negatively with global alpha (8-12 Hz) and positively with central frontal theta (4-8 Hz) frequencies in the human resting awake electroencephalogram, Neuroscience Letters, 340 (1) (2003), 17-20. https://doi.org/10.1016/S0304-3940(03)00033-8
[37]Fan, X., Zhou, Q., Liu, Z., Xie, F. Electroencephalogram assessment of mental fatigue in visual search, Bio-medical materials and engineering, 26(s1) (2015), s1455–s1463. http://dx.doi.org/10.3233/BME-151444.
[38]Hu S, Zheng G, Peters B. Driver fatigue detection from electroencephalogram spectrum after electrooculography artefact removal, IET Intelligent Transport Systems, 7(1) (2013), 105-113. https://doi.org/10.1049/iet-its.2012.0045.
[39]Q. He, W. Li, X. Fan and Z. Fei. Driver fatigue evaluation model with integration of multi-indicators based on dynamic Bayesian network, IET Intell. Transp. Syst., 9(5) (2014), 547-554. https://doi.org/10.1049/iet-its.2014.0103.
[40]Craig, A., Tran, Y., Wijesuriya, N., Nguyen, H. Regional brain wave activity changes associated with fatigue. Psychophysiology, 49(4) (2012), 574–582. https://doi.org/10.1111/j.1469-8986.2011.01329.x.
[41]Hosseini, M. P., Hosseini, A., & Ahi, K. A review on machine learning for EEG signal processing in bioengineering. IEEE reviews in biomedical engineering, 14 (2020), 204-218. https://doi.org/10.1109/RBME.2020.2969915.
[42]Vivaldi, N., Caiola, M., Solarana, K., & Ye, M. Evaluating performance of eeg data-driven machine learning for traumatic brain injury classification. IEEE Transactions on Biomedical Engineering, 68(11) (2021), 3205-3216. https://doi.org/10.1109/TBME.2021.3062502.
[43]Yoo, J. On-chip epilepsy detection: Where machine learning meets patient-specific healthcare. In 2017 International SoC Design Conference (ISOCC) (pp. 146-147) (2017, November). IEEE. https://doi.org/10.1109/ISOCC.2017.8368839.
[44]Miyata, Y., Zhu, Y., Ozawa, K., Shimomura, H., & Shirasaka, T. Identification of Switches by Machine Learning of EEG Data When Listening to Switch Sounds. In 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech) (pp. 219-221) (2022, March). IEEE. https://doi.org/10.1109/LifeTech53646.2022.9754762.
[45]Yang, W., Joo, M., Kim, Y., Kim, S. H., & Chung, J. M. Hybrid Machine Learning Scheme for Classification of BECTS and TLE Patients Using EEG Brain Signals. IEEE Access, 8 (2020), 218924-218935. https://doi.org/10.1109/ACCESS.2020.3038948.
[46]Murtazina, M. S., & Avdeenko, T. V. Classification of brain activity patterns using machine learning based on EEG data. In 2020 1st International Conference Problems of Informatics, Electronics, and Radio Engineering (PIERE) (pp. 219-224) (2020, December). IEEE. https://doi.org/10.1109/PIERE51041.2020.9314660.
[47]Borragán, G., Slama, H., Bartolomei, M., & Peigneux, P. Cognitive fatigue: A time-based resource-sharing account. Cortex, 89 (2017), 71-84. https://doi.org/10.1016/j.cortex.2017.01.023.
[48]Stone, J. V. Independent component analysis: an introduction. Trends in cognitive sciences, 6(2) (2002), 59-64. https://doi.org/10.1016/S1364-6613(00)01813-1.
[49]Saby, J. N., & Marshall, P. J. The utility of EEG band power analysis in the study of infancy and early childhood. Developmental neuropsychology, 37(3) (2012), 253-273. https://doi.org/10.1080/87565641.2011.614663.
[50]Cajochen, C., Brunner, D. P., Krauchi, K., Graw, P., & Wirz-Justice, A. Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep, 18(10) (1995), 890-894. https://doi.org/10.1093/sleep/18.10.890.
[51]Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., & Pennartz, C. M. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage, 55(4) (2011), 1548-1565. https://doi.org/10.1016/j.neuroimage.2011.01.055.
[52]Li, H., Liu, T., Wu, X., & Chen, Q. A bearing fault diagnosis method based on enhanced singular value decomposition. IEEE Transactions on Industrial Informatics, 17(5) (2020), 3220-3230. https://doi.org/10.1109/TII.2020.3001376.
[53]Henry, E. R., & Hofrichter, J. Singular value decomposition: Application to analysis of experimental data. In Methods in enzymology (Vol. 210, pp. 129-192) (1992). Academic Press. https://doi.org/10.1016/0076-6879(92)10010-B.
[54]Golafshan, R., & Sanliturk, K. Y. SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults. Mechanical Systems and Signal Processing, 70 (2016), 36-50. https://doi.org/10.1016/j.ymssp.2015.08.012.
[55]De Vries, J., Michielsen, H., Van Heck, G. L., & Drent, M. Measuring fatigue in sarcoidosis: the Fatigue Assessment Scale (FAS). British journal of health psychology, 9(3) (2004), 279-291. https://doi.org/10.1348/1359107041557048.
[56]Xu, T., Xu, L., Zhang, H., Ji, Z., Li, J., Bezerianos, A., & Wang, H. Effects of Rest-Break on mental fatigue recovery based on EEG dynamic functional connectivity. Biomedical Signal Processing and Control, 77(2022), 103806. https://doi.org/10.1016/j.bspc.2022.103806.
[57]Plechawska-Wojcik, M., Kaczorowska, M., & Zapala, D. The artifact subspace reconstruction (ASR) for EEG signal correction. A comparative study. In Information systems architecture and technology: proceedings of 39th international conference on information systems architecture and technology–ISAT 2018: part II (pp. 125-135) (2019). Springer International Publishing. https://doi.org/10.1007/978-3-319-99996-8_12.
[58]Li, S., Zhou, W., Yuan, Q., Geng, S., & Cai, D. Feature extraction and recognition of ictal EEG using EMD and SVM. Computers in biology and medicine, 43(7)(2013), 807-816. https://doi.org/10.1016/j.compbiomed.2013.04.002.
[59]Haresign, I. M., Phillips, E., Whitehorn, M., Noreika, V., Jones, E. J. H., Leong, V., & Wass, S. V. Automatic classification of ICA components from infant EEG using MARA. Developmental cognitive neuroscience, 52(2021), 101024. https://doi.org/10.1016/j.dcn.2021.101024.
[60]Chuang, C. H., Chang, K. Y., Huang, C. S., & Jung, T. P. IC-U-Net: a U-Net-based denoising autoencoder using mixtures of independent components for automatic EEG artifact removal. NeuroImage, 263(2022), 119586. https://doi.org/10.1016/j.neuroimage.2022.119586.
[61]Jap, B. T., Lal, S., Fischer, P., & Bekiaris, E. Using EEG spectral components to assess algorithms for detecting fatigue. Expert Systems with Applications, 36(2) (2009), 2352-2359. https://doi.org/10.1016/j.eswa.2007.12.043.
[62]Ten Caat, M., Lorist, M. M., Bezdan, E., Roerdink, J. B., & Maurits, N. M. High-density EEG coherence analysis using functional units applied to mental fatigue. Journal of neuroscience methods, 171(2) (2008), 271-278. https://doi.org/10.1016/j.jneumeth.2008.03.022.
[63]Xu, T., Xu, L., Zhang, H., Ji, Z., Li, J., Bezerianos, A., & Wang, H. Effects of Rest-Break on mental fatigue recovery based on EEG dynamic functional connectivity. Biomedical Signal Processing and Control, 77(2022), 103806. https://doi.org/10.1016/j.bspc.2022.103806
[64]Smith, S. M. (2004). Overview of fMRI analysis. The British Journal of Radiology, 77(suppl_2), S167-S175. https://doi.org/10.1259/bjr/33553595.
[65]Tai, Y. F., & Piccini, P. (2004). Applications of positron emission tomography (PET) in neurology. Journal of Neurology, Neurosurgery & Psychiatry, 75(5), 669-676. https://doi.org/10.1136/jnnp.2003.028175.
[66]Buzug, T. M. (2011). Computed tomography. In Springer handbook of medical technology (pp. 311-342). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74658-4_16.
[67]Sun, Y., Lim, J., Kwok, K., & Bezerianos, A. (2014). Functional cortical connectivity analysis of mental fatigue unmasks hemispheric asymmetry and changes in small-world networks. Brain and cognition, 85, 220-230. https://doi.org/10.1016/j.bandc.2013.12.011.