|
[1] K. Boyd, K. H. Eng, and C. D. Page. Area under the precision-recall curve: point estimates and confidence intervals. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III 13, pages 451–466. Springer, 2013. [2] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation coefficient. Noise reduction in speech processing, pages 1–4, 2009. [3] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9):1263–1284, 2009. doi: 10.1109/TKDE.2008.239. [4] G. Menardi and N. Torelli. Training and assessing classification rules with imbalanced data. Data mining and knowledge discovery, 28:92–122, 2014. [5] D. C. Montgomery, E. A. Peck, and G. G. Vining. Introduction to linear regression analysis. John Wiley & Sons, 2021. [6] T. Saito and M. Rehmsmeier. The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3):e0118432, 2015. [7] F. Thabtah, S. Hammoud, F. Kamalov, and A. Gonsalves. Data imbalance in classification: Experimental evaluation. Information Sciences, 513:429–441, 2020.
|