跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:唐文謙
研究生(外文):Wen-Chien Tang
論文名稱:感染臺灣多種單子葉與雙子葉植物 Pectobacterium 屬細菌之遺傳與表型多樣性
論文名稱(外文):Genetic and phenotypic diversity of Pectobacterium species infecting diverse monocots and eudicots in Taiwan
指導教授:朱家慶朱家慶引用關係
指導教授(外文):Chia-Ching Chu
口試委員:王智立呂昀陞
口試委員(外文):Chih-Li WangYun-Sheng Lu
口試日期:2024-01-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:52
中文關鍵詞:Pectobacterium 屬遺傳分析致腐能力寄主偏好性
外文關鍵詞:Pectobacteriumphylogenetic analysismaceration potentialhost preference
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Pectobacterium 屬細菌為重要的植物病原,可感染多種植物寄主。此屬細菌的分類系統在近幾年來已陸續發生多次更動。過去針對 Pectobacterium 屬表型多樣性的研究經常只使用分離自特定具經濟重要性的作物之菌株,或是使用過時的分類系統進行分析。有鑑於此,對於能感染更廣泛植物種類之 Pectobacterium 屬菌種或菌株在特性差異的暸解相當缺乏。本研究從臺灣蒐集了來自 12 個不同植物科別的 78 個菌株,並對這些菌株進行了一系列的遺傳與表型分析。在 12 個植物科別中,有 4 個屬於單子葉植物,而其餘 8 個則屬於雙子葉植物。在針對所有菌株進行系統發生學分析後,可鑑別出至少 6 個 Pectobacterium 屬之菌種。其中以 P. aroidearum 與 P. brasiliense 包含最多數量的供試菌株。在比對各菌株之寄主來源後,可發現部分菌種似乎具有不同的寄主偏好性;舉例而言,P. aroidearum 菌株大多分離自單子葉植物,而 P. brasiliense 與 P. actinidiae 菌株的寄主多為雙子葉植物。在生理生化測試與 Biolog 分析中發現同菌種的代表性菌株之間存在明顯的表型差異,然而產生吲哚搭配分解磷酸的能力之測試可有效區別 P. brasiliense 與其他菌種之菌株。將各菌種之代表性菌株接種到馬鈴薯、青江菜、彩色海芋和洋蔥四種寄主後,可觀察到菌株的致腐能力存在顯著的種間與種內異質性 (inter- and intra-specific heterogeneities),而各菌種與菌株間的感染趨勢差異也取決於寄主植物的種類。總體而言,本研究之結果拓展了對 Pectobacterium 屬表型多樣性的認知,並有助於提升此屬之病原菌鑑定與病害管理的精確性。
Bacteria belonging to the Pectobacterium genus are a group of important plant pathogens that can infect many plant hosts. The classification system of these pathogen has modified many times over the years. Earlier studies on the phenotypic diversity in Pectobacterium often included strains isolated from selected crops of economic importance or relied on outdated classification schemes. Thus, a general understanding on phenotypic heterogeneity in Pectobacterium species and strains affecting more diverse plant hosts remain lacking. The present work conducted a series of phylogenetic and phenotypic tests on 78 Taiwanese strains obtained from 4 monocot and 8 eudicot plant families. Neighbor-joining analysis on the tested strains identified at least 6 recognized species, with P. aroidearum and P. brasiliense being the most predominant. The results suggested that different Pectobacterium species could exhibit varying host preferences. For most strains of P. aroidearum, the isolation sources were monocots, whereas in P. brasiliense and P. actinidiae, the strains seemed to exhibit preferences for eudicots. Representative strains of different Pectobacterium species were subjected to physiological assays and Biolog analyses, and great phenotypic variations were detected within species. Interestingly, we found that indole production and phosphatase activity assays together were able to differentiate all representative strains of P. brasiliense from those of other species. Artificial inoculation tests on representative bacterial strains using potato, bok choy, calla lily and onion revealed both inter- and intra-specific heterogeneities in the pathogens' maceration potentials. In some cases, the virulence patterns across Pectobacterium species and strains varied among assays conducted on different plant hosts. In sum, the results obtained in this study contribute to the understanding of phenotypic diversities in the Pectobacterium genus. These findings also have implications for managing and identifying Pectobacterium species.
摘要 i
Abstract ii
Contents iv
List of Tables vi
List of Figures vii
1. Introduction 1
2. Materials and methods 5
2.1. Bacterial strains 5
2.2. Bacterial DNA extraction 5
2.3. Preliminary characterization and identification of bacterial strains 6
2.4. Multilocus sequence analysis and reconstruction of a phylogenetic tree 7
2.5. Bacterial growth at different temperatures 9
2.6. Physiological and biochemical assays 9
2.7. Biolog analysis 9
2.8. Bacterial inoculation assays using different host plants 10
3. Results 12
3.1. Preliminary characterization and identification of bacterial strains 12
3.2. Multilocus sequence analysis 12
3.3. Phenotypic characteristics of representative strains 14
3.4. Comparison among Biolog profiles of different representative strains 15
3.5. Maceration potentials of different Pectobacterium species on different host plants 15
3.6. Strain-level comparison of Pectobacterium maceration potentials on different host plants 16
4. Discussion 17
5. Reference 22
6. Tables 33
7. Figures 36
8. Supplementary information 43
Abràmoff, M. D., Magalhães, P. J., and Ram, S. J. 2004. Image processing with ImageJ. Biophotonics Int. 11:36-42.
Ben Moussa, H., Pédron, J., Bertrand, C., Hecquet, A., and Barny, M.-A. 2021. Pectobacterium quasiaquaticum sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 71.
Brady, C. L., Cleenwerck, I., Venter, S. N., Engelbeen, K., De Vos, P., and Coutinho, T. A. 2010. Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as Pantoea cypripedii comb. nov. Int. J. Syst. Evol. Microbiol. 60:2430-2440.
Charkowski, A., Blanco, C., Condemine, G., Expert, D., Franza, T., Hayes, C., Hugouvieux-Cotte-Pattat, N., Lopez Solanilla, E., Low, D., Moleleki, L., Pirhonen, M., Pitman, A., Perna, N., Reverchon, S., Rodriguez Palenzuela, P., San Francisco, M., Toth, I., Tsuyumu, S., van der Waals, J., van der Wolf, J., Van Gijsegem, F., Yang, C. H., and Yedidia, I. 2012. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annu. Rev. Phytopathol. 50:425-449.
Charkowski, A. O. 2007. The soft rot Erwinia. Pages 423-505 in: Plant-associated bacteria. Springer.
Charkowski, A. O. 2018. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 56:269-288.
Choi, E. D., Song, J. H., and Park, S.-Y. 2023. First report of canker caused by Pectobacterium actinidiae on Asian Pear Trees (Pyrus pyrifolia) in South Korea. Plant Dis. 107:937.
Chuang, M.-F. 1989. Bacterial soft rot of radish in Taiwan. MS Thesis. National Chung Hsing University, Taichung, Taiwan.
Cigna, J., Dewaegeneire, P., Beury, A., Gobert, V., and Faure, D. 2017. A gapA PCR-sequencing assay for identifying the Dickeya and Pectobacterium potato pathogens. Plant Dis. 101:1278-1282.
Darrasse, A., Priou, S., Kotoujansky, A., and Bertheau, Y. 1994. PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases. Appl. Environ. Microbiol. 60:1437-1443.
Dees, M. W., Lysøe, E., Rossmann, S., Perminow, J., and Brurberg, M. B. 2017. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 67:5222-5229.
Gallois, A., Samson, R., Ageron, E., and Grimont, P. A. 1992. Erwinia carotovora subsp. odorifera subsp. nov., associated with odorous soft rot of chicory (Cichorium intybus L.). Int. J. Syst. Evol. Microbiol. 42:582-588.
Gardan, L., Gouy, C., Christen, R., and Samson, R. 2003. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 53:381-391.
Hauben, L., Moore, E. R., Vauterin, L., Steenackers, M., Mergaert, J., Verdonck, L., and Swings, J. 1998. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 21:384-397.
Hélias, V., Hamon, P., Huchet, E., Wolf, J. V. D., and Andrivon, D. 2012. Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol. 61:339-345.
Hong, S.-M., Ten, L. N., Park, K.-T., Back, C.-G., Waleron, M., Kang, I.-K., Lee, S.-Y., and Jung, H.-Y. 2023. Pectobacterium jejuense sp. nov. isolated from cucumber stem tissue. Curr. Microbiol. 80:308.
Hsiao, C.-H. 2006. Integrated weed management of upland crops. Weed Sci. Bull. 27:13-20.
Hu, M., Zhang, C., Mu, Y., Shen, Q., and Feng, Y. 2010. Indole affects biofilm formation in bacteria. Indian J. Microbiol. 50:362-368.
Hugouvieux-Cotte-Pattat, N., des-Combes, C. J., Briolay, J., and Pritchard, L. 2021. Proposal for the creation of a new genus Musicola gen. nov., reclassification of Dickeya paradisiaca (Samson et al. 2005) as Musicola paradisiaca comb. nov. and description of a new species Musicola keenii sp. nov. Int. J. Syst. Evol. Microbiol. 71:005037.
Hugouvieux‐Cotte‐Pattat, N., Condemine, G., and Shevchik, V. E. 2014. Bacterial pectate lyases, structural and functional diversity. Environ. Microbiol. Rep. 6:427-440.
Jonkheer, E. M., Brankovics, B., Houwers, I. M., van der Wolf, J. M., Bonants, P. J., Vreeburg, R. A., Bollema, R., de Haan, J. R., Berke, L., and Smit, S. 2021. The Pectobacterium pangenome, with a focus on Pectobacterium brasiliense, shows a robust core and extensive exchange of genes from a shared gene pool. BMC Genomics 22:1-18.
Kao, C.-W., Wu, Y.-F., and Lin, C.-H. 2023. Species diversity of bacterial soft rot pathogens of vegetables in Taiwan. J. Plant Med. 65:21-32.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., and Duran, C. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647-1649.
Khadka, N., Joshi, J. R., Reznik, N., Chriker, N., Nudel, A., Zelinger, E., Kerem, Z., and Yedidia, I. 2020. Host specificity and differential pathogenicity of Pectobacterium strains from dicot and monocot hosts. Microorganisms 8:1479.
Khayi, S., Cigna, J., Chong, T. M., Quêtu-Laurent, A., Chan, K.-G., Hélias, V., and Faure, D. 2016. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int. J. Syst. Evol. Microbiol. 66:5379-5383.
Klair, D., Arizala, D., Dobhal, S., Boluk, G., Alvarez, A. M., and Arif, M. 2022. Pectobacterium colocasium sp. nov. isolated from taro (Colocasia esculenta). bioRxiv.
Kwon, S.-W., Go, S.-J., Kang, H.-W., Ryu, J.-C., and Jo, J.-K. 1997. Phylogenetic analysis of Erwinia species based on 16S rRNA gene sequences. Int. J. Syst. Evol. Microbiol. 47:1061-1067.
Lee, D. H., Kim, J.-B., Lim, J.-A., Han, S.-W., and Heu, S. 2014. Genetic diversity of Pectobacterium carotovorum subsp. brasiliensis isolated in Korea. Plant Pathol. J. 30:117.
Lelliott, R., Billing, E., and Hayward, A. 1966. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Microbiol. 29:470-489.
Li, N.-P., Tang, W.-Q., Lee, S., Wang, C.-L., and Chu, C.-C. 2022. First report of Pectobacterium carotovorum and Pectobacterium brasiliense causing bacterial soft rot of bok choy in Taiwan. Plant Dis.
Li, Y. Y. 1994. Bacterial soft rot of colored calla lily in Taiwan. MS Thesis, Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.
Lin, T.-S. 1997. Bacterial Rhizome Rot of Colored Calla Lily. MS thesis. National Chung Hsing University, Taichung, Taiwan.
Lin, Y. R., Lee, S., Lu, C. H., and Chu, C. C. 2020. Genetic and phenotypic characterization of Xanthomonas axonopodis pv. maculifoliigardeniae causing bacterial leaf spot of Ixora in Taiwan. J. Phytopathol. 168:478-489.
Luzzatto, T., Yishay, M., Lipsky, A., Ion, A., Belausov, E., and Yedidia, I. 2007. Efficient, long‐lasting resistance against the soft rot bacterium Pectobacterium carotovorum in calla lily provided by the plant activator methyl jasmonate. Plant Pathol. 56:692-701.
Ma, B., Hibbing, M. E., Kim, H.-S., Reedy, R. M., Yedidia, I., Breuer, J., Breuer, J., Glasner, J. D., Perna, N. T., and Kelman, A. 2007. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97:1150-1163.
MacWilliams, M. P. 2012. Indole test protocol. American Society for Microbiology, Washington, DC.
Mauri, M., Elli, T., Caviglia, G., Uboldi, G., and Azzi, M. 2017. RAWGraphs: A visualisation platform to create open outputs. In Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter (USA: Association for Computing Machinery):1–5.
McGinnis, M. R., D'Amato, R. F., and Land, G. A. 1982. Pictorial handbook of medically important fungi and aerobic actinomycetes. Praeger, New York.
Mueller, R. S., Beyhan, S., Saini, S. G., Yildiz, F. H., and Bartlett, D. H. 2009. Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J. Bacteriol. 191:3504-3516.
Nabhan, S., De Boer, S. H., Maiss, E., and Wydra, K. 2013. Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int. J. Syst. Evol. Microbiol. 63:2520-2525.
Oulghazi, S., Cigna, J., Lau, Y. Y., Moumni, M., Chan, K. G., and Faure, D. 2019. Transfer of the waterfall source isolate Pectobacterium carotovorum M022 to Pectobacterium fontis sp. nov., a deep-branching species within the genus Pectobacterium. Int. J. Syst. Evol. Microbiol. 69:470-475.
Oulghazi, S., Sarfraz, S., Zaczek-Moczydlowska, M. A., Khayi, S., Ed-Dra, A., Lekbach, Y., Campbell, K., Novungayo Moleleki, L., O'Hanlon, R., and Faure, D. 2021. Pectobacterium brasiliense: Genomics, host range and disease management. Microorganisms 9:106.
Ozturk, M., Aksoy, H. M., Potrykus, M., and Lojkowska, E. 2018. Genotypic and phenotypic variability of Pectobacterium strains causing blackleg and soft rot on potato in Turkey. Eur. J. Plant Pathol. 152:143-155.
Pasanen, M., Laurila, J., Brader, G., Palva, E. T., Ahola, V., Van Der Wolf, J., Hannukkala, A., and Pirhonen, M. 2013. Characterisation of Pectobacterium wasabiae and Pectobacterium carotovorum subsp. carotovorum isolates from diseased potato plants in Finland. Ann. Appl. Biol. 163:403-419.
Pasanen, M., Waleron, M., Schott, T., Cleenwerck, I., Misztak, A., Waleron, K., Pritchard, L., Bakr, R., Degefu, Y., and van der Wolf, J. 2020. Pectobacterium parvum sp. nov., having a Salmonella SPI-1-like Type III secretion system and low virulence. Int. J. Syst. Evol. Microbiol. 70:2440.
Pédron, J., Bertrand, C., Taghouti, G., Portier, P., and Barny, M.-A. 2019. Pectobacterium aquaticum sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 69:745-751.
Portier, P., Pédron, J., Taghouti, G., Dutrieux, C., and Barny, M.-A. 2020. Updated taxonomy of Pectobacterium genus in the CIRM-CFBP bacterial collection: when newly described species reveal “old” endemic population. Microorganisms 8:1441.
Portier, P., Pédron, J., Taghouti, G., Fischer-Le Saux, M., Caullireau, E., Bertrand, C., Laurent, A., Chawki, K., Oulgazi, S., Moumni, M., Andrivon, D., Dutrieux, C., Faure, D., Helias, V., and Barny, M. A. 2019. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 69:3207-3216.
Richter, M., and Rosselló-Móra, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106:19126-19131.
Samson, R., Legendre, J. B., Christen, R., Fischer-Le Saux, M., Achouak, W., and Gardan, L. 2005. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int. J. Syst. Evol. Microbiol. 55:1415-1427.
Sarfraz, S., Riaz, K., Oulghazi, S., Cigna, J., Sahi, S. T., Khan, S. H., and Faure, D. 2018. Pectobacterium punjabense sp. nov., isolated from blackleg symptoms of potato plants in Pakistan. Int. J. Syst. Evol. Microbiol. 68:3551-3556.
Schaad, N. W., Jones, J. B., and Chun, W. 2001. Laboratory guide for the identification of plant pathogenic bacteria. American Phytopathological Society (APS Press).
Seo, S.-T., Furuya, N., Lim, C.-K., Takanami, Y., and Tsuchiya, K. 2002. Phenotypic and genetic diversity of Erwinia carotovora ssp. carotovora strains from Asia. J. Phytopathol. 150:120-127.
Sledz, W., Motyka-Pomagruk, A., Zukowska, D., Babinska-Wensierska, W., Zoledowska, S., and Lojkowska, E. 2023. Genotypic and phenotypic uniformity among the population of Pectobacterium atrosepticum strains isolated during three growing seasons from potato fields in Poland. Eur. J. Plant Pathol. 167:99-121.
Tamura, K., Stecher, G., and Kumar, S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38:3022-3027.
Tang, W.-Q., Chang, C.-Y., Lee, Y.-J., and Chu, C.-C. 2021. First report of Pectobacterium aroidearum causing bacterial soft rot of carrot in Taiwan. Plant Dis. 105:695-695.
Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
Thomson, S. V., Hildebrand, D. C., and Schroth, M. N. 1981. Identification and nutritional differentiation of the Erwinia sugar beet pathogen from members of Erwinia carotovora and Erwinia chrysanthemi. Phytopathology 71:1037-1042.
Tsror, L., Hélias, V., Mordechai‐Lebiush, S., Erlich, O., Hazanovsky, M., Chalupowicz, L., Reuven, M., Dror, O., Valinsky, L., Laurent, A., and Manulis‐Sasson, S. 2021. Characterization of Pectobacterium brasiliense strains from potato and vegetables in Israel. Plant Pathol. 70:2179-2187.
Tu, C. C., Cheng, Y. H., Chen, Y. S., and Liao, C. H. 1994. Proceeding of a symposium on root crop yield improvement, processing and utilization in Taiwan. Chia-Yi Agricultural Experiment Station, Taiwan.
Waleron, M., Misztak, A., Waleron, M., Franczuk, M., Wielgomas, B., and Waleron, K. 2018. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov. Syst. Appl. Microbiol. 41:85-93.
Waleron, M., Misztak, A., Waleron, M., Jonca, J., Furmaniak, M., and Waleron, K. 2019a. Pectobacterium polonicum sp. nov. isolated from vegetable fields. Int. J. Syst. Evol. Microbiol. 69:1751-1759.
Waleron, M., Misztak, A., Waleron, M., Franczuk, M., Jońca, J., Wielgomas, B., Mikiciński, A., Popović, T., and Waleron, K. 2019b. Pectobacterium zantedeschiae sp. nov. a new species of a soft rot pathogen isolated from calla lily (Zantedeschia spp.). Syst. Appl. Microbiol. 42:275-283.
Wang, L.-H., Tang, W.-Q., Chan, J.-J., Lee, Y.-J., Chang, C.-Y., Fang, Z.-Q., and Chu, C.-C. 2023. First report of bacterial soft rot on Epipremnum aureum caused by Pectobacterium aroidearum in Taiwan. Plant Dis. 107:550.
Wei, X.-Y., Deng, W. L., and Chu, C. C. 2021. Phylogenetic and phenotypic analyses on Dickeya spp. isolated from different host plants in Taiwan. Journal Phytopathol. 169:678-691.
Wu, W., Liu, Y., Huang, X., and Zhang, L. 2017. First report of summer canker caused by Pectobacterium carotovorum subsp. actinidiae on kiwifruit in China’s Sichuan Province. Plant Dis. 101:1540.
Xie, T., Zhu, H., Liao, T., Liang, Y., and An, Q. 2023. Complete genome sequence resource of the pathogen Pectobacterium cacticida CFCC 10813T causing soft rot diseases of cactus plants. PhytoFrontiers 3:456-460.
Yap, M.-N., Barak, J. D., and Charkowski, A. O. 2004. Genomic diversity of Erwinia carotovora subsp. carotovora and its correlation with virulence. Appl. Environ. Microbiol. 70:3013.
Yoon, S. H., Ha, S. M., Lim, J., Kwon, S., and Chun, J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281-1286.
Zeng, G.-Q. 1979. Studies on soft-rotting Erwinia species in Taiwan. MS thesis. National Chung Hsing University, Taichung, Taiwan.
Zhou, J., Hu, M., Hu, A., Li, C., Ren, X., Tao, M., Xue, Y., Chen, S., Tang, C., and Xu, Y. 2022. Isolation and genome analysis of Pectobacterium colocasium sp. nov. and Pectobacterium aroidearum, two new pathogens of taro. Front. Plant Sci. 13:852750.
電子全文 電子全文(網際網路公開日期:20250228)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top