跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 16:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃妤蓁
研究生(外文):Yu-Jhen Huang
論文名稱:寄主生理因子及生物防治菌對紅龍果莖潰瘍病之影響
論文名稱(外文):Effect of Host Physiological Factors and Biocontrol Agents on the Development of Dragon Fruit Stem Canker
指導教授:洪爭坊
指導教授(外文):Cheng-Fang Hong
口試委員:倪蕙芳謝廷芳
口試日期:2024-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:77
中文關鍵詞:紅龍果莖潰瘍病表皮厚度個體發育抗性病徵潛伏期生物防治
外文關鍵詞:dragon fruit stem cankerepidermal thicknessontogenic resistanceincubation periodbiocontrol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
紅龍果莖潰瘍病的病原菌為葡萄座腔菌科之Neoscytalidium dimidiatum (Penz.) Crous & Slippers,該病原菌已在許多國家被報導為紅龍果之主要病原。N. dimidiatum會於枝條、果實上造成黃色凹陷斑點及潰瘍等病徵,使產量下降並導致果實喪失商品價值。根據田間觀察,莖潰瘍病病徵可能分布於整個枝條,或侷限於枝條上的特定段落。其中,年輕枝條似乎較容易受到病原菌侵入感染,然而,尚無研究深入探討枝條生長階段或生理狀況對病徵潛伏期或病斑擴展速度的影響。因此,本研究擬針對寄主生理因子對於病徵潛伏期與病斑擴展的影響進行深入探討。除此之外,目前管理該病害的方式仍以施用化學藥劑為主,為了尋找替代的防治方法,本研究亦篩選有益微生物,期能有助管理該病害。由於表皮為植物抵禦病原菌的第一道防線,加上表皮厚度會隨著枝條發育與年齡而增加,因此本研究假設枝條表皮厚度與相對年齡會影響接種後病徵出現的時間(病徵潛伏期)與病斑的擴展。在接種大紅(cv. Dahong)與越南白肉(cv. Vietnamese White)枝條上的不同段落後(代表不同相對年齡),觀察記錄並分析枝條相對年齡、表皮厚度、病徵潛伏期與病斑擴展之間的關係。結果顯示,莖潰瘍病之病徵潛伏期與枝條相對年齡之間具有正相關性,但不一定與表皮厚度有正相關。年輕段落的表皮厚度通常較薄,其病徵潛伏期約5.6~7.0天,且病斑擴展較快;成熟及老化段落之病徵潛伏期則分別約為8.0~10.4天與10.6~14.7天,且病斑擴展較慢。若在枝條上製造傷口後進行接種,則會顯著的縮短病徵潛伏期至3.0~5.0天;而表皮受傷的年輕段落相較於成熟及老化的段落,仍有較短的病徵潛伏期且病斑擴展較快的趨勢,說明除了表皮的物理防禦外,不同生長階段的枝條,可能存在其他防禦反應上的差異。此外,為了尋找替代農藥的防治方法,本研究於土壤中篩選了50個菌株,其中,Bv14、Bv19、Bv22及Bv44四個菌株抑制N. dimidiatum菌絲生長效果最佳,且能抑制孢子發芽並產生抗菌之揮發性有機化合物(VOCs),經確認其對白菜種子發芽無不良影響。經16S rDNA序列分析後初步確認四個菌株皆屬於Bacillus 屬的細菌,根據生理生化測試結果,四個菌株都能夠分泌澱粉酶、蛋白質酶、纖維素酶並具有溶磷能力。進一步評估Bacillus sp. Bv14、Bv19、Bv22、Bv44於枝條上之防治效果,結果顯示,當各菌株之培養液原液與病原菌孢子同時接種於枝條時,會使病徵潛伏期略為縮短,且會增加罹病度;提前一天施用稀釋100倍之Bv44培養液或Bv44細胞懸浮液亦無顯著之防治效果,然而添加0.5% K2HPO4的配方,則可有效延後病徵出現時間並降低枝條的罹病度,未來可再深入探討如何將拮抗菌株製劑化,作為低風險期時紅龍果莖潰瘍病的防治替代方案。
Neoscytalidium dimidiatum, a fungus belonging to the family Botryosphaeriaceae, has been documented as a major pathogen on dragon fruit (Hylocereus spp.) in many countries. The pathogen can cause yellow sunken spots and necrotic lesions on cladodes and fruits, leading to severe yield losses and a reduction of market value. Based on field observations, stem canker symptoms could distribute across the entire cladode or be limited in certain sections of infected cladodes, and the symptoms seems to appear earlier on younger cladodes. However, the effect of cladode developmental stages and physiological conditions on the incubation period of infection process or lesion expansion remains unexplored. Since the epidermis plays an important role on plant physical defense, and the epidermal thickness gradually increases during the vegetative growth of cladode, we hypothesized that the incubation period and lesion expansion rate are affected by the age of the cladode and the epidermal thickness when weather conditions are conducive. The relationship between the cladode age (represented by different sections of the cladode), epidermal thickness, and the incubation period and lesion expansion were investigated after artificial inoculating the cladodes of Dahong and Vietnamese White cultivars in a controlled environment. The results exhibited a positive association between the incubation period and relative cladode age, but not necessarily the epidermal thickness. Younger parts of the cladode with thinner epidermis tended to have a shorter incubation period of 5.6~7.0 days, along with more rapid symptom development. On contrary, longer incubation period of 8.0~10.4 days and 10.6~14.7 days and slower symptom development was observed in the mature and aged sections of the cladodes, respectively. When the cladodes were wounded, the incubation period was significantly shortened compared to unwounded ones. Nevertheless, lesion expansion rate in mature and aged sections was still slower compared to younger sections, suggesting that in addition to the physical defense provided by the epidermis, ontogenic resistance or other defense responses may also be involved in different developmental stages of the cladodes. Since the disease is primarily managed by fungicides, the second objective was to screen for potential biocontrol agents against dragon fruit stem canker. Among 50 bacterial strains isolated from soil, Bv14, Bv19, Bv22 and Bv44 showed the best in vitro antagonistic effect against N. dimidiatum mycelial growth and conidial germination. The bacterial strains could also produce antifungal volatile compounds against N. dimidiatum and had no adverse impact on pak-choi seed germination. Based on the biochemistry tests, the four bacteria could produce amylase, protease, cellulose, and showed phosphate solubilization activities, and were identified belonging to the Genus Bacillus through 16S rDNA sequence analysis. To further evaluate the efficacy of cultural broth on disease management, Bacillus spp. Bv14, Bv19, Bv22, Bv44 were respectively incubated in nutrient broth. Application of cultural broth of Bacillus spp. Bv14, Bv19, Bv22, Bv44 with the spore suspension of N. dimidiatum shortened the incubation period and increased the disease severity on the cladodes. Furthermore, applying 100-fold diluted culture broth or cell suspension of Bv44 one day before inoculation also showed no significant control effect, while adding 0.5% K2HPO4 in the formula effectively extended the incubation period and reduced the disease severity. Further studies are warranted to determine the optimal formula and application methods for applying the biocontrol agents as a fungicide alternative when there is a low risk of dragon fruit stem canker.
摘要 i
ABSTRACT iii
目錄 v
表次索引 vii
圖次索引 viii
前言 1
材料與方法 7
一、供試植株與病原菌株來源 7
(一)、供試植株來源 7
(二)、供試病原菌株來源、保存與活化 7
二、寄主生理因素對紅龍果莖潰瘍病病徵潛伏期之影響 7
(一)、供試病原菌株與接種源的製備 7
(二)、枝條相對年齡與表皮厚度對病徵潛伏期之影響 8
(三)、枝條表皮受傷對病徵潛伏期之影響 9
三、拮抗菌株之分離與篩選 9
(一)、拮抗菌之誘釣、分離及保存 9
(二)、初步篩選對N. dimidiatum具有抑制效果之拮抗菌 10
四、拮抗菌株之分子鑑定與生理特性 10
(一)、拮抗菌株之DNA萃取與初步分子鑑定 10
(二)、胞外水解酵素與溶磷能力測試 12
五、拮抗菌株之生物防治潛力評估 12
(一)、供試病原菌株 12
(二)、拮抗菌株對N. dimidiatum菌絲生長之影響 13
(三)、拮抗菌株培養濾液對N. dimidiatum孢子發芽之影響 13
(四)、拮抗菌株產生揮發性有機化合物(VOCs)之能力 14
(五)、拮抗菌株對白菜種子發芽之影響 14
六、拮抗菌株對紅龍果莖潰瘍病的影響 15
(一)、拮抗菌株培養液原液對紅龍果莖潰瘍病的影響 15
(二)、不同配方對紅龍果莖潰瘍病的影響 15
七、統計分析 16
結果 18
一、寄主生理因素對紅龍果莖潰瘍病病徵潛伏期之影響 18
(一)、不同相對年齡枝條段落的表皮厚度 18
(二)、不同相對年齡枝條段落的病徵潛伏期與病斑擴展 18
(三)、枝條相對年齡與表皮厚度對病徵潛伏期之影響 19
(四)、枝條表皮受傷對病徵潛伏期之影響 19
二、拮抗菌株之分離與初步篩選 20
三、拮抗菌株之分子鑑定與生理特性 20
(一)、拮抗菌株之初步分子鑑定結果 20
(二)、胞外水解酵素與溶磷能力測試 21
四、拮抗菌之生物防治潛力評估 22
(一)、拮抗菌株對N. dimidiatum菌絲生長之影響 22
(二)、拮抗菌株培養濾液對N. dimidiatum孢子發芽之影響 22
(三)、拮抗菌株產生之揮發性有機化合物(VOCs)對N. dimidiatum菌絲生長之影響 23
(四)、拮抗菌株對白菜種子發芽之影響 23
五、拮抗菌株對紅龍果莖潰瘍病的影響 23
(一)、拮抗菌株培養液原液對紅龍果莖潰瘍病的影響 23
(二)、不同配方對紅龍果莖潰瘍病的影響 24
討論 26
參考文獻 34
表圖 45
毛青樺。2008。蟹爪蘭X病毒與紅龍果X病毒之分子特性與偵測。國立臺灣大學植物病理與微生物學研究所碩士學位論文。90頁。台北。
王智立、林正忠。2005。紅龍果果腐及仙人掌莖腐病。植物病理學會刊14(4):269-274。
江一蘆、陳丁河、顏昌瑞。2015。世界紅龍果產業現況。農業試驗所特刊187: 19-27。
林筑蘋、安寶貞、蔡志濃、徐子惠、張捷婷。2014。臺灣新紀錄真菌Gilbertella persicaria引起之紅龍果濕腐病。植物病理學會刊。23(2): 109-124。
林駿奇。2020。紅龍果莖潰瘍病之發生與防治建議。臺東區農業專訓114:18-21。
高穗生、曾經州、洪巧珍、蔡勇勝、謝奉家。2009。生物農藥簡介。作物診斷與農藥安全使用手冊46-60。
郭建志。2014。芽孢桿菌屬細菌防治作物病害之應用現況。台中區農業改良場特刊。122: 332-338。
郭建志、林煜恒、廖君達、羅珮昕。2018。芽孢桿菌製劑導入有機與友善病害管理之研究。台中區農業感良場特刊。135: 141-154。
張雅君、毛青樺、呂有其、李永賜。2015。紅龍果病毒的研究現況。臺灣紅龍果生產技術改進研討會專刊187: 93-99。
荷詠晴。2023。Neoscytalidium dimidiatum的族群生物學及Streptomyces spp.對其拮抗效果初探。國立中興大學植物病理學系碩士學位論文。136頁。台中。
陳盟松。2017。臺灣紅龍果產期調節技術發展。台中區農業改良場特刊91-100。
黃仁麒、吳雅芳、蔡佳欣、周浩平、林宜賢、陳穎練。2021。液化澱粉芽孢桿菌Ba01防治馬鈴薯青枯病之探討。臺灣農業研究70(1):24-42。
葉俊毅。2022。臺灣紅龍果莖潰瘍病族群藥劑感受性分析與半選擇性培養基之開發。國立中興大學植物病理學系碩士學位論文。69頁。台中。
詹修語。2012。台灣火龍果胞囊線蟲之發生、鑑定及生態學研究。國立中興大學植物病理學系碩士學位論文。40頁。台中。
農業部農糧署。2022。農情調查資訊查詢。檢自: https://agr.afa.gov.tw/afa/afa_frame.jsp
蔡志濃、林筑蘋、安寶貞、鄧汀欽、廖吉彥、倪蕙芳、楊宏仁。2013。紅龍果的重要病害及其防治(上)。農業試驗所技術服務96: 1-7。
蔡健浩。2021。鏈黴菌Streptomyces griseorubiginosus LJS06防治胡瓜炭疽病的效果及其相關機制。國立中興大學植物病理學系碩士學位論文。102頁。台中。
劉碧鵑。2010。臺灣紅龍果的栽培。農業試驗所特刊。144: 1-32。
劉碧鵑、留欽培。2015。臺灣紅龍果品種選育現況與未來展望。臺灣紅龍果生產技術改進研討會專刊29-43。
Ajuna, H. B., Lim, H. I., Moon, J. H., Won, S. J., Choub, V., Choi, S. I., Yun, J. Y., and Ahn, Y. S. 2023. The prospect of hydrolytic enzymes from Bacillus species in the biological control of pests and diseases in forest and fruit tree production. International Journal of Molecular Sciences 24(23):16889.
Alfiky, A., L’Haridon, F., Abou-Mansour, E., and Weisskopf, L. 2022. Disease inhibiting effect of strain Bacillus subtilis EG21 and its metabolites against potato pathogens Phytophthora infestans and Rhizoctonia solani. Phytopathology 112(10):2099-2109.
Almoneafy, A. A., Kakar, K. U., Nawaz, Z., Li, B., Saand, M. A., Yang, C. L., and Xie, G. L. 2014. Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 63:59-70.
Amtmann, A., Troufflard, S., and Armengaud, P. 2008. The effect of potassium nutrition on pest and disease resistance in plants. Physiologia Plantarum 133:682-91.
Arslan, U. 2015. Evaluation of antifungal activity of mono and dipotassium phosphates against phytopathogenic fungi. Fresenius Environmental Bulletin 24(3):810-816.
Cabra Cendales, T., Rodríguez González, C. A., Villota Cuásquer, C. P., Tapasco Alzate, O. A., and Hernández Rodríguez, A. 2017. Bacillus effect on the germination and growth of tomato seedlings (Solanum lycopersicum L.). Acta Biológica Colombiana 22(1):37-44.
Calonnec, A., Jolivet, J., Vivin, P. and Schnee, S. 2018. Pathogenicity traits correlate with the susceptible Vitis vinifera leaf physiology transition in the biotroph fungus Erysiphe necator: an adaptation to plant ontogenic resistance. Frontiers in Plant Science 9:1808.
Carisse, O., and Bouchard, J. 2010. Age-related susceptibility of strawberry leaves and berries to infection by Podosphaera aphanis. Crop Protection 29:969-978.
Chan, H. Y., Yen, J. H., Chen, D. Y., Tsay, T. T., and Chen, P. 2016. The occurrence, identification and ecological studies of the cactus nematode from dragon fruit crops in Taiwan. Journal of Plant Medicine 58(1):25-31.
Chang, C. W., Chen, C. Y., Wang, C. L. and Chung, W. H. 2020. First report of leaf blight on Cattleya × hybrid caused by Neoscytalidium dimidiatum in Taiwan. Journal of Plant Pathology 102(3):921.
Chuang, M. F., Ni, H. F., Yang, H. R., Shu, S. L., Lai, S. Y., and Jiang, Y. L. 2012. First report of stem canker disease of pitaya (Hylocereus undatus and H. polyrhizus) caused by Neoscytalidium dimidiatum in Taiwan. Plant Disease 96(6):906-906.
Derviş, S., Ozer, G., and Türkölmez, S. 2020. First report of Neoscytalidium dimidiatum causing tuber rot of potato in Turkey. Journal of Plant Pathology 102:1295-1296.
Djordje, F., Ivica, D., Tanja, B., Jelena, L., and Slaviša S. 2018. Biological control of plant pathogens by Bacillus specie. Journal of Biotechnology 285:44-55.
Dordas, C. 2008. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development 28:33-46.
Dy, K. S., Wonglom, P., Pornsuriya, C., and Sunpapao, A. 2022. Morphological, molecular identification and pathogenicity of Neocytalidium causing stem canker of Hylocereus polyrhizus in Southern Thailand. Plants 11(4):504.
Ezra, D., Liarzi, O., Gat, T., Hershcovich, M., and Dudai, M. 2013. First report of internal black rot caused by Neoscytalidium dimidiatum on Hylocereus undatus (pitahaya) fruit in Israel. Plant Disease 97(11):1513-1513.
Falk, S. P., Gadoury, D. M., and Seem, R. C. 1996. Impact of ontogenic resistance and fenarimol on seasonal development of scab on apple foliage. Phytopathology 86(suppl.):S85-86.
Ficke, A., Gadoury, D. M., and Seem, R. C. 2002. Ontogenic resistance and plant disease management: a case study of grape powdery mildew. Phytopathology 92(6):671-675.
Fullerton, R. A., Sutherland P. A., Rebstock R. S., Hieu, N. T., Thu, N. N. A., Linh, D. T., Thanh, N. T. K., and Van Hoa, N. 2018. The life cycle of dragon fruit canker caused by Neoscytalidium dimidiatum and implications for control. In Proceedings of Dragon Fruit Regional Network Initiation Workshop. 71-80.
Gao, H., Li, P., Xu, X., Zeng, Q., and Guan, W. 2018. Research on volatile organic compounds from Bacillus subtilis CF-3: biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation. Front Microbiol 9:456.
Gleason, M. L., Duttweiler, K. B., Batzer, J. C., Taylor, S. E., Sentelhas, P. C., Monteiro, J. E. B. A., and Gillespie, T. J. 2008. Obtaining weather data for input to crop disease-warning systems: leaf wetness duration as a case study. Scientia Agricola 65(spe):76-87.
Gong, A. D., Li, H. P., Yuan, Q. S., Song, X. S., Yao, W., He, W. J., Zang, J. B., and Liao, Y. C. 2015. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS one 10:1-18.
Güney, İ. G., Bozoğlu, T., Özer, G., and Derviş, S. 2023. A novel blight and root rot of chickpea: A new host for Neoscytalidium dimidiatum. Crop Protection 172:106326.
Güney, İ. G., Bozoğlu, T., Özer, G., Türkölmez, Ş., and Derviş, S. 2022. First report of Neoscytalidium dimidiatum associated with dieback and canker of common fig (Ficus carica L.) in Turkey. Journal of Plant Diseases and Protection 129:701-705.
Hilda, R., and Reynaldo, F. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17:319-339.
Hong, C. F., Gazis, R., Crane, J. H., and Zhang, S. 2020. Prevalence and epidemics of Neoscytalidium stem and fruit canker on pitahaya (Hylocereus spp.) in South Florida. Plant Disease 104(5):1433-1438.
Hong, C. X., and Fitt, B. D. L. 1996. Factors affecting the incubation period of dark leaf and pod spot (Alternaria brassicae) on oilseed rape (Brassica napus). European Journal of Plant Pathology 102:545-553.
Huang, Q., Liu, H., Zhang, J., Wang, S., Liu, F., Li, C., and Wang, G. 2022. Production of extracellular amylase contributes to the colonization of Bacillus cereus 0-9 in wheat roots. BMC Microbiol 22(1):205.
Intana, W., Kumla, J., Suwannarach, N., and Sunpapao, A. 2023. Biological control potential of a soil fungus Trichoderma asperellum K1-02 against Neoscytalidium dimidiatum causing stem canker of dragon fruit. Physiological Molecular Plant Pathology 128:102151.
Ismail, S. I., Ahmad Dahlan, K., Abdullah, S., and Zulperi, D. 2020. First report of Neoscytalidium dimidiatum causing fruit rot on guava (Psidium guajava L.) in Malaysia. Plant Disease 105(1):220.
Javelle, M., Vernoud, V., Rogowsky, P. M., and Ingram, G. C. 2011. Epidermis: the information and functions of a fundamental plant tissue. New Phytologist 189:17-39.
Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., and Gulati, A. 2008. A rapid easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology 57(5):503-7.
Leclerc, M., Doré, T., Gilligan, C. A., Lucas, P., and Filipe, J. A. 2014. Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases. PLoS One 9(1):e86568.
Li, B., and Xu, X. 2002. Infection and development of apple scab (Venturia inaequalis) on old leaves. Journal of Phytopathology 150:687-691.
Li, X. Y., Mao, Z. C., Wu, Y. X., Ho, H. H., and He, Y. Q. 2015. Comprehensive volatile organic compounds profiling of Bacillus species with biocontrol properties by head space solid phase microextraction with gas chromatography-mass spectrometry. Biocontrol Science and Technology 25(2):132-143.
Lin, C. P., Ann, P. J., Huang, H. C., Chang, J. T., and Tsai, J. N. 2017. Anthracnose of pitaya (Hylocereus spp.) caused by Colletotrichum spp., a new postharvest disease in Taiwan. Journal of Taiwan Agricultural Research 66(3):171-183.
Lin, S., Chen, X., Xie, L., Zhang, Y., Zeng, F., Long, Y., Ren, L., Qi, Xiuling., and Wei, J. 2023. Biocontrol potential of lipopeptides produced by Paenibacillus polymyxa AF01 against Neoscytalidium dimidiatum in pitaya. Frontiers in Microbiology 14:1188722.
Ling, L., Cheng, W., Jiang, K., Jiao, Z., Luo, H., Yang, C., Pang, M., and Lu, L. 2022. The antifungal activity of a serine protease and the enzyme production of characteristics of Bacillus licheniformis TG116. Archives of Microbiology 204(10):601.
Liou, M. R., Huang, C. L., and Liou, R. F. 2001. First report of Cactus virus X on Hylocereus undatus (Cactaceae) in Taiwan. Plant Disease 85:229.
Liu, Y. H., Song, Y. H., and Ruan, Y. L. 2022. Sugar conundrum in plant-pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. Journal of Experimental Botany 73(7):1910-1925.
Lu, Z. X., Lu, X. P., Qin, B. H., Cheng, M. H., Huang, L. D., Cheng, B. S., and Liao, Y. M. 2015. Identification of pathogen of pitaya stem canker disease in Fangchenggang city of Guangxi. Journal of Southern Agriculture 46(9):1606-1612.
Luo, Y., and Michailides, T. J. 2001. Factors affecting latent infection of prune fruit by Monilinia fructicola. Phytopathology 91:864-872.
Maloy, O. C. 2005. Plant Disease Management. The Plant Health Instructor. DOI: 10.1094/PHI-I-2005-0202-01.
Mello, J. F., Brito, A. C. Q., Motta, C. M. S., Vieira, J. C. B., Michereff, S. J. and Machado, A. R. 2019. First report of Neoscytalidium dimidiatum causing root rot in sweet potato in Brazil. Plant Disease 103(2):373-374.
Mohd, M. H., Salleh, B., and Zakaria, L. 2013. Identification and molecular characterizations of Neoscytalidium dimidiatum causing stem canker of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. Journal of Phytopathology 161:841-849.
National Center for Biotechnology Information. 2024. PubChem Compound Summary for CID 24450, Dipotassium phosphate. Retrieved June 25, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Dipotassium-phosphate.
Ni, H. F., Huang, C. W., Hsu, S. L., Lai, S. Y., and Yang, H. R. 2013. Pathogen characterization and fungicide screening of stem canker of pitaya. Journal of Taiwan Agricultural Research 62:225-234.
Nouri, M. T., Lawrence, D. P., Yaghmour, M. A., Michailides, T. J., and Trouillas, F. P. 2018. Neoscytalidium dimidiatum causing canker, shoot blight and fruit rot of almond in California. Plant Disease 102(8):1638-1647.
Oksal, E., Celik, Y. and Özer, G. 2019. Neoscytalidium dimidiatum causes canker and dieback of grapevine in Turkey. Australasian Plant Disease Notes 14:33.
Pavan, W., Fraisse, C. W., and Peres, N. A. 2011. Development of a web-based disease forecasting system for strawberries. Computers and Electronics in Agriculture 75:169-175.
Polizzi, G., Aiello, D., Vitale, A., Giuffrida, F., Groenewald, J. Z., and Crous, P. W. 2009. First report of shoot blight, canker, and gummosis caused by Neoscytalidium dimidiatum on citrus in Italy. Plant Disease 93:1215.
Prakash, J. and Arora, N. K. 2019. Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech 9(4):126.
Qiu, W. P., Feechan, A., and Dry, I. 2015. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture Research 2:15020.
Rabbee, M. F., Ali, M. S., Choi, J., Hwang, B. S., Jeong, S. C., and Baek, K. H. 2019. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 24(6):1046.
Ratanaprom, S., Nakkanong, K., Nualsri, C., Jiwanit, P., Rongsawat, T., and Woraathakorn, N. 2021. Overcoming encouragement of dragon fruit plant (Hylocereus undatus) against stem brown spot disease caused by Neoscytalidium dimidiatum using Bacillus subtilis combined with sodium bicarbonate. Plant Pathology Journal 37(3):205-214.
Ray, J. D., Burgess, T. and Lanoiselet, V. M. 2010. First record of Neoscytalidium dimidiatum and N. novaehollandiae on Mangifera indica and N. dimidiatum on Ficus carica in Australia. Australasian Plant Disease Notes 5:48-50.
Salunkhe, V. N., Bhagat, Y. S., Chavan, S. B., Lonkar, S. G., and Kakade, V. D. 2022. First report of Neoscytalidium dimidiatum causing stem canker of dragon fruit (Hylocereus spp.) in India. Plant Disease 107(4).
Sanahuja, G., Lopez, P., and Palmateer, A. J. 2016. First report of Neoscytalidium dimidiatum causing stem and fruit canker of Hylocereus undatus in Florida. Plant Disease 100(7):1499-1499.
Sangiogo, M., Rodriguez, D. P., Moccellin, R., Bermudez, J. M. M., Corrêa, B. O., and Moura, A. B., 2018. Foliar spraying with bacterial biocontrol agents for the control of common bacterial blight of bean. Pesquisa Agropecuária Brasileira 53:1101-1108.
Shashidar, A., Staffan, M., Mikael, A. P., Sarosh, B., and Johan, M. 2016. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiology Ecology 92:6.
Song, P., Zhao, B., Sun, X., Li, L., Wang, Z., Ma, C., and Zhang, J. 2023. Effects of Bacillus subtilis HS5B5 on maize seed germination and seedling growth under NaCl Stress conditions. Agronomy 13(7):1874.
Sonune, N., and Garode, A. 2018. Isolation, characterization and identification of extracellular enzyme producer Bacillus licheniformis from municipal wastewater and evaluation of their biodegradability. Biotechnology Research and Innovation 2:37-44.
Syed-Ab-Rahman, S. F., Carvalhais, L. C., Chua, E., Xiao, Y., Wass, T. J., and Schenk, P. M. 2018. Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth. Frontiers in Plant Science 9: 1502.
Türkölmez, Ş., Derviş, S., Çiftçi, O., Serçe, Ç. U., and Dikilitas, M. 2019. New disease caused by Neoscytalidium dimidiatum devastates tomatoes (Solanum lycopersicum) in Turkey. Crop Protection 118:21-30.
Veresoglou, S. D., Barto, E. K., Menexes, G., and Rillig, M. C. 2013. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathology 62:961-69.
Wang, Y. C., Liu J. H., Huang, C. C., and Hong, C. F. 2022. First report of dragon fruit (Hylocereus undatus) stem rot caused by Diaporthe ueckerae in Taiwan. Plant Disease 106(5):1527.
Wilson, L. L., Madden, L. V., and Ellis, M. A. 1990. Influence of temperature and wetness duration on infection of immature and mature strawberry fruit by Colletotrichum acutatum. Phytopathology 80:111-116.
Xiao, J., Guo, X., Qiao, X., Zhang, X., Chen, X., and Zhang, D. 2021. Activity of fengycin and iturin A isolated from Bacillus subtilis Z-14 on Gaeumannomyces graminis var. tritici and soil microbial diversity. Frontiers in Microbiology 12:682437.
Xu, M., Liu, C. L., Fu, Y., Liao, Z. W., Guo, P. Y., Xiong, R., Cheng, Y., Wei, S. S., Huang, J. Q., and Tang, H. 2020. Molecular characterization and expression analysis of pitaya (Hylocereus polyrhizus) HpLRR genes in response to Neoscytalidium dimidiatum infection. BMC Plant Biology 20:160.
Yi, R. H., Lin, L. Q., Mo, J. J., Wu F. F., and Chen, J. 2015. Fruit internal brown rot caused by Neoscytalidium dimidiatum on pitahaya in Guangdong province, China. Australasian Plant Disease Notes 10:10-13.
Zaid, D. S., Cai, S., Hu, C., Li, Z., and Li, Y. 2022. Comparative genome analysis reveals phylogenetic identity of Bacillus vlezensis NHA3 and genomic insights into its plant growth promotion and biocontrol effects. Microbiol Spectrum 10:e02169-21.
Zhang, J., Huang, X., Hou, Y., Xia, X., Zhu, Z., Huang, A., Feng, S., Li, P., and Dong, P. 2023. Isolation and screening of antagonistic endophytes against Phytophthora infestans and preliminary exploration on anti-oomycete mechanism of Bacillus velezensis 6-5. Plants 12(4):909.
電子全文 電子全文(網際網路公開日期:20260815)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊