跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 18:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施景程
研究生(外文):Jing-Cheng Shih
論文名稱:噴灑誘導基因靜默與蟲生真菌對秋行軍蟲的協同防治效果評估
論文名稱(外文):Evaluation of the synergistic effect of spray-induced gene silencing and entomopathogenic fungi in controlling fall armyworm (Spodoptera frugiperda).
指導教授:陳禮弘乃育昕
指導教授(外文):Li-Hung ChenYu-Shin Nai
口試委員:吳岳隆
口試委員(外文):Yueh-Lung Wu
口試日期:2024-07-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物醫學暨安全農業碩士學位學程
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:62
中文關鍵詞:秋行軍蟲噴灑誘導基因靜默蟲生真菌
外文關鍵詞:Spodoptera frugiperdaspray-induced gene silencingentomopathogenic fungi
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
秋行軍蟲(Spodoptera frugiperda)為寄主作物廣泛的農業害蟲,在台灣嚴重危害玉米和高粱等經濟作物的生產。目前針對秋行軍蟲的防治策略主要依賴噴灑化學藥劑。隨著食品安全以及環境保育等議題逐漸受到重視,開發環境有善的害蟲防治方法為現今重要的研究方向。本研究透過噴灑誘導基因靜默(spray-induced gene silencing, SIGS)的應用,以雙股RNA (dsRNA)誘發RNA干擾(RNA interference, RNAi),靜默秋行軍蟲重要生理機能相關基因,並評估與蟲生真菌的協同防治成效。dsRNA進入昆蟲後的穩定性為影響昆蟲RNAi效率的因素之一,經測試秋行軍蟲中腸液具有降解dsRNA的能力,其中double-stranded ribonuclease 3 (dsRNase3)以及RNAi efficiency–related nuclease 3 (REase3)為中腸內表現量最高的核酸酶基因。本研究選擇秋行軍蟲Chitinase, Inhibitor of Apoptosis Protein (IAP)與Sucrose Non-Fermenting 7 (Snf7)為目標,以大腸桿菌(Escherichia coli) dsRNA生產系統進行目標基因片段dsRNA生產。透過餵食的方式對秋行軍蟲幼蟲施用dsRNA,與餵食滅菌水的對照組相比,在REase3, Chitinase, IAP以及Snf7相對基因表達降低了49 %至80 %,但對幼蟲的正常生長發育及存活未造成明顯影響。為了進一步提升RNAi的效果,本研究使用PEGylated-chitosan作為載體包覆dsRNA,並以相同的餵食方式對秋行軍蟲幼蟲進行測試,Chitinase以及IAP基因表達量分別下降了55 %與53 %,但在表現型上亦無顯著差異。隨後,研究測試了蟲生真菌Beauveria bassiana-NCHU-157與RNAi的協同防治效果,結果顯示無論是餵食還是噴灑dsRNA的RNAi策略,對蟲生真菌的殺蟲效果均無顯著提升。綜上所述,本研究中秋行軍蟲RNAi的效果尚不明確,雖然目標基因受到調降,但幼蟲的生長發育及與蟲生真菌的協同作用均未見明顯影響。對於秋行軍蟲體內核酸酶以及核心RNAi機制的深入研究將有助於未來RNAi技術在其防治中的應用。
Fall armyworm (Spodoptera frugiperda) is an agricultural pest with a wide host range, severely damaging the production of economically important crops such as corn, sorghum, and others in Taiwan. Current control strategies mainly rely on chemical pesticides. As food safety and environmental conservation issues become increasingly important, developing environmentally friendly pest control methods has become a critical research topic. This study plans to apply spray-induced gene silencing (SIGS) using double-stranded RNA (dsRNA) to induce RNA interference (RNAi), silencing key physiological genes in the fall armyworm. Additionally, it evaluates the synergistic control effectiveness with entomopathogenic fungi. The stability of dsRNA within insects is one factor affecting RNAi efficiency. Results showed that the midgut fluid of fall armyworms has the ability to degrade dsRNA. Among the ribonucleases, double-stranded ribonuclease 3 (dsRNase3) and RNAi efficiency-related nuclease 3 (REase3) are the most highly expressed in the fall armyworm midgut. In this study, we selected Chitinase, Inhibitor of Apoptosis Protein (IAP), and Sucrose Non-Fermenting 7 (Snf7) genes as targets to design dsRNAs. The production of dsRNA for these target gene fragments was using Escherichia coli dsRNA production system. In the RNAi assay, dsRNA was administered to fall armyworm larvae via feeding. The results demonstrated that the relative gene expression of REase3, Chitinase, IAP, and Snf7 decreased by 49% to 80% compared to the control treatment, respectively, where larvae were fed sterile water. However, no significant effects on larval growth, development, or survival rate were observed. To enhance the efficacy of RNAi, this study utilized PEGylated-chitosan as a carrier to encapsulate dsRNA, which was administered to fall armyworm larvae via the same feeding method. The results indicated a decrease in Chitinase and IAP gene expression by 55 % and 53 %, respectively. However, no significant phenotypic differences were observed. Subsequently, the study examined the synergistic control effect of the entomopathogenic fungus Beauveria bassiana-NCHU-157 with dsRNA. The results indicated that neither feeding nor spraying dsRNA significantly augmented the insecticidal efficacy of Beauveria bassiana. In conclusion, the RNAi efficacy on fall armyworm in this study remains inconclusive. While target gene expression was reduced, no significant impacts on larval growth, development, or synergistic interactions with Beauveria bassiana were observed. Further investigation into the ribonucleases and core RNAi mechanisms within the fall armyworm could aid the future application of RNAi technology in its control.
摘要 i
Abstract ii
Contents iv
List of tables vi
List of figures vii
1 Introduction 1
1.1 Fall armyworm Spodoptera frugiperda (J.E. Smith). 1
1.2 Control of fall armyworm. 1
1.3 RNA interference (RNAi). 2
1.4 RNAi application in pest control. 3
1.5 Challenges in applying RNAi for Lepidoptera pest control. 4
1.6 Ribonucleases in Lepidoptera. 5
1.7 Enhancing dsRNA delivery for RNAi applications. 6
2 Material and methods 8
2.1 Fall armyworm 8
2.2 Entomopathogenic fungi 8
2.3 Pathogenicity test of entomopathogenic fungi 9
2.4 Target gene selection for fall armyworm RNAi 9
2.5 Construction of dsRNA expression plasmid 10
2.6 dsRNA production, extraction, and purification. 11
2.7 Stability test of dsRNA 13
2.8 Evaluate ribonuclease genes in fall armyworm midgut 13
2.9 Synthesis of PEGylated-chitosan-dsRNA complex 14
2.10 RNAi assay with feeding method 15
2.11 Synergistic effect test of RNAi and Entomopathogenic fungi (EPF) 15
2.12 RNA extraction and RT-qPCR assay 16
2.13 Statistical analysis 17
3 Result 18
3.1 Screening of entomopathogenic fungi (EPF) against fall armyworm 18
3.2 Construct dsRNA expression plasmid and dsRNA production via E. coli. 18
3.3 DsRNA stability in the midgut of fall armyworm. 19
3.4 Primary ribonuclease genes expressed in fall armyworm midgut. 20
3.5 Fall armyworm RNAi with feeding strategy. 21
3.6 RNAi cooperation with entomopathogenic fungi. 22
3.7 PEGylated-chitosan as a carrier for enhancing the stability of dsRNA. 23
3.8 PEGylated-chitosan-dsRNA RNAi assay on fall armyworm. 24
3.9 PEGylated-chitosan-dsRNA cooperation with entomopathogenic fungi. 25
4 Discussion 27
5 Reference 32
6 Tables and figures 38
Agrawal, N., Dasaradhi, P. V., Mohmmed, A., Malhotra, P., Bhatnagar, R. K., & Mukherjee, S. K. (2003). RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev, 67(4), 657-685. https://doi.org/10.1128/mmbr.67.4.657-685.2003
Arimatsu, Y., Kotani, E., Sugimura, Y., & Furusawa, T. (2007). Molecular characterization of a cDNA encoding extracellular dsRNase and its expression in the silkworm, Bombyx mori. Insect Biochem Mol Biol, 37(2), 176-183. https://doi.org/10.1016/j.ibmb.2006.11.004
Bao, W., Li, A., Zhang, Y., Diao, P., Zhao, Q., Yan, T., Zhou, Z., Duan, H., Li, X., & Wuriyanghan, H. (2021). Improvement of host-induced gene silencing efficiency via polycistronic-tRNA-amiR expression for multiple target genes and characterization of RNAi mechanism in Mythimna separata. Plant Biotechnol J, 19(7), 1370-1385. https://doi.org/10.1111/pbi.13555
Boaventura, D., Buer, B., Hamaekers, N., Maiwald, F., & Nauen, R. (2021). Toxicological and molecular profiling of insecticide resistance in a Brazilian strain of fall armyworm resistant to Bt Cry1 proteins. Pest Manag Sci, 77(8), 3713-3726. https://doi.org/10.1002/ps.6061
Burtet, L. M., Bernardi, O., Melo, A. A., Pes, M. P., Strahl, T. T., & Guedes, J. V. (2017). Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Pest Manag Sci, 73(12), 2569-2577. https://doi.org/10.1002/ps.4660
Caccia, S., Astarita, F., Barra, E., Di Lelio, I., Varricchio, P., & Pennacchio, F. (2020). Enhancement of Bacillus thuringiensis toxicity by feeding Spodoptera littoralis larvae with bacteria expressing immune suppressive dsRNA. Journal of Pest Science, 93(1), 303-314. https://doi.org/10.1007/s10340-019-01140-6
Chen, S. L., Dai, S. M., Lu, K. H., & Chang, C. (2008). Female-specific doublesex dsRNA interrupts yolk protein gene expression and reproductive ability in oriental fruit fly, Bactrocera dorsalis (Hendel). Insect Biochem Mol Biol, 38(2), 155-165. https://doi.org/10.1016/j.ibmb.2007.10.003
Chisonga, C., Chipabika, G., Sohati, P. H., & Harrison, R. D. (2023). Understanding the impact of fall armyworm (Spodoptera frugiperda JE Smith) leaf damage on maize yields. Plos one, 18(6), e0279138. https://doi.org/10.1371/journal.pone.0279138
Cooper, A. M., Silver, K., Zhang, J., Park, Y., & Zhu, K. Y. (2019). Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Manag Sci, 75(1), 18-28. https://doi.org/10.1002/ps.5126
Das, S., Debnath, N., Cui, Y., Unrine, J., & Palli, S. R. (2015). Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: A comparative analysis. ACS Appl Mater Interfaces, 7(35), 19530-19535. https://doi.org/10.1021/acsami.5b05232
Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Early, R., & Godwin, J. (2017). Fall armyworm: impacts and implications for Africa. Outlooks on Pest Management, 28(5), 196-201. https://doi.org/10.1564/v28_oct_02
Dhandapani, R. K., Gurusamy, D., & Palli, S. R. (2022). Protamine-lipid-dsRNA nanoparticles improve RNAi efficiency in the fall armyworm, Spodoptera frugiperda. J Agric Food Chem, 70(22), 6634-6643. https://doi.org/10.1021/acs.jafc.2c00901
Ding, Y. F., Wei, J., Li, S., Pan, Y. T., Wang, L. H., & Wang, R. (2019). Host-guest interactions initiated supramolecular chitosan nanogels for selective intracellular drug delivery. ACS Appl Mater Interfaces, 11(32), 28665-28670. https://doi.org/10.1021/acsami.9b09059
Eigenbrod, T., & Dalpke, A. H. (2015). Bacterial RNA: An underestimated stimulus for innate immune responses. J Immunol, 195(2), 411-418. https://doi.org/10.4049/jimmunol.1500530
Emadi, F., Amini, A., Gholami, A., & Ghasemi, Y. (2017). Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Scientific Reports, 7(1), 42258. https://doi.org/10.1038/srep42258
Fan, Y., Song, H., Abbas, M., Wang, Y., Liu, X., Li, T., Ma, E., Zhu, K. Y., & Zhang, J. (2022). The stability and sequence cleavage preference of dsRNA are key factors differentiating RNAi efficiency between migratory locust and Asian corn borer. Insect Biochem Mol Biol, 143, 103738. https://doi.org/10.1016/j.ibmb.2022.103738
Flenniken, M. L., & Andino, R. (2013). Non-specific dsRNA-mediated antiviral response in the honey bee. Plos one, 8(10), e77263. https://doi.org/10.1371/journal.pone.0077263
Guan, R., Chen, Q., Li, H., Hu, S., Miao, X., Wang, G., & Yang, B. (2019). Knockout of the HaREase gene improves the stability of dsRNA and increases the sensitivity of Helicoverpa armigera to Bacillus thuringiensis toxin. Front Physiol, 10, 1368. https://doi.org/10.3389/fphys.2019.01368
Guan, R. B., Li, H. C., Fan, Y. J., Hu, S. R., Christiaens, O., Smagghe, G., & Miao, X. X. (2018). A nuclease specific to lepidopteran insects suppresses RNAi. J Biol Chem, 293(16), 6011-6021. https://doi.org/10.1074/jbc.RA117.001553
Gurusamy, D., Mogilicherla, K., & Palli, S. R. (2020). Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch Insect Biochem Physiol, 104(4), e21677. https://doi.org/10.1002/arch.21677
Gurusamy, D., Mogilicherla, K., Shukla, J. N., & Palli, S. R. (2020). Lipids help double-stranded RNA in endosomal escape and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch Insect Biochem Physiol, 104(4), e21678. https://doi.org/10.1002/arch.21678
Gutierrez-Moreno, R., Mota-Sanchez, D., Blanco, C. A., Chandrasena, D., Difonzo, C., Conner, J., Head, G., Berman, K., & Wise, J. (2020). Susceptibility of fall armyworms (Spodoptera frugiperda J.E.) from Mexico and Puerto rico to Bt proteins. Insects, 11(12). https://doi.org/10.3390/insects11120831
He, L., Huang, Y., & Tang, X. (2022). RNAi-based pest control: Production, application and the fate of dsRNA. Front Bioeng Biotechnol, 10, 1080576. https://doi.org/10.3389/fbioe.2022.1080576
Horikoshi, R. J., Vertuan, H., de Castro, A. A., Morrell, K., Griffith, C., Evans, A., Tan, J., Asiimwe, P., Anderson, H., José, M., Dourado, P. M., Berger, G., Martinelli, S., & Head, G. (2021). A new generation of Bt maize for control of fall armyworm (Spodoptera frugiperda). Pest Manag Sci, 77(8), 3727-3736. https://doi.org/10.1002/ps.6334
Idrees, A., Qadir, Z. A., Akutse, K. S., Afzal, A., Hussain, M., Islam, W., Waqas, M. S., Bamisile, B. S., & Li, J. (2021). Effectiveness of entomopathogenic fungi on immature stages and feeding performance of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Insects, 12(11). https://doi.org/10.3390/insects12111044
Jhang, J.-W., Chou, Y.-H., Wang, T.-H., Hsieh, M.-H., & Chiang, W.-H. (2022). One-pot green reduction and surface decoration of graphene oxide nanosheets with PEGylated chitosan for application in cancer photothermal therapy. Journal of the Taiwan Institute of Chemical Engineers, 134, 104359. https://doi.org/https://doi.org/10.1016/j.jtice.2022.104359
Kenis, M., Benelli, G., Biondi, A., Calatayud, P.-A., Day, R., Desneux, N., Harrison, R. D., Kriticos, D., Rwomushana, I., & Van den Berg, J. (2022). Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. https://doi.org/10.1127/entomologia/2022/1659
Kolge, H., Kadam, K., Galande, S., Lanjekar, V., & Ghormade, V. (2021). New frontiers in pest control: Chitosan nanoparticles-shielded dsRNA as an effective topical RNAi spray for gram podborer biocontrol. ACS Appl Bio Mater, 4(6), 5145-5157. https://doi.org/10.1021/acsabm.1c00349
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
Lück, S., Kreszies, T., Strickert, M., Schweizer, P., Kuhlmann, M., & Douchkov, D. (2019). siRNA-Finder (si-Fi) software for RNAi-target design and off-target prediction. Front Plant Sci, 10, 1023. https://doi.org/10.3389/fpls.2019.01023
Montezano, D. G., Sosa-Gómez, D. R., Specht, A., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. V., Peterson, J. A., & Hunt, T. E. (2018). Host plants of Spodoptera frugiperda (Lepidoptera : Noctuidae) in the Americas. African entomology, 26(2), 286-300. https://doi.org/doi:10.4001/003.026.0286
Nwokeoji, A. O., Kilby, P. M., Portwood, D. E., & Dickman, M. J. (2016). RNASwift: A rapid, versatile RNA extraction method free from phenol and chloroform. Anal Biochem, 512, 36-46. https://doi.org/10.1016/j.ab.2016.08.001
Pallis, S., Alyokhin, A., Manley, B., Rodrigues, T., Barnes, E., & Narva, K. (2023). Effects of low doses of a novel dsRNA-based biopesticide (Calantha) on the Colorado potato beetle. Journal of Economic Entomology, 116(2), 456-461. https://doi.org/10.1093/jee/toad034
Peng, Y., Wang, K., Zhu, G., Han, Q., Chen, J., Elzaki, M. E. A., Sheng, C., Zhao, C., Palli, S. R., & Han, Z. (2020). Identification and characterization of multiple dsRNases from a lepidopteran insect, the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Pestic Biochem Physiol, 162, 86-95. https://doi.org/10.1016/j.pestbp.2019.09.011
Peng, Y., Zhu, G.-H., Wang, K., Chen, J., Liu, X., Wu, M., Zhao, C., Xiao, H., Palli, S. R., & Han, Z. (2021). Knockout of SldsRNase1 and SldsRNase2 revealed their function in dsRNA degradation and contribution to RNAi efficiency in the tobacco cutworm, Spodoptera litura. Journal of Pest Science, 94(4), 1449-1460. https://doi.org/10.1007/s10340-021-01335-w
Pesch, Y.-Y., Riedel, D., Patil, K. R., Loch, G., & Behr, M. (2016). Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Scientific Reports, 6(1), 18340. https://doi.org/10.1038/srep18340
Prentice, K., Smagghe, G., Gheysen, G., & Christiaens, O. (2019). Nuclease activity decreases the RNAi response in the sweetpotato weevil Cylas puncticollis. Insect Biochem Mol Biol, 110, 80-89. https://doi.org/10.1016/j.ibmb.2019.04.001
Ramaseshadri, P., Segers, G., Flannagan, R., Wiggins, E., Clinton, W., Ilagan, O., McNulty, B., Clark, T., & Bolognesi, R. (2013). Physiological and cellular responses caused by RNAi- mediated suppression of Snf7 orthologue in western corn rootworm (Diabrotica virgifera virgifera) larvae. Plos one, 8(1), e54270. https://doi.org/10.1371/journal.pone.0054270
Reinders, J. D., Moar, W. J., Head, G. P., Hassan, S., & Meinke, L. J. (2023). Effects of SmartStax® and SmartStax® PRO maize on western corn rootworm (Diabrotica virgifera virgifera LeConte) larval feeding injury and adult life history parameters. Plos one, 18(7), e0288372. https://doi.org/10.1371/journal.pone.0288372
Shi, J. F., Mu, L. L., Chen, X., Guo, W. C., & Li, G. Q. (2016). RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say). Int J Biol Sci, 12(11), 1319-1331. https://doi.org/10.7150/ijbs.14464
Shukla, J. N., Kalsi, M., Sethi, A., Narva, K. E., Fishilevich, E., Singh, S., Mogilicherla, K., & Palli, S. R. (2016). Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol, 13(7), 656-669. https://doi.org/10.1080/15476286.2016.1191728
Singh, I. K., Singh, S., Mogilicherla, K., Shukla, J. N., & Palli, S. R. (2017). Comparative analysis of double-stranded RNA degradation and processing in insects. Scientific Reports, 7(1), 17059. https://doi.org/10.1038/s41598-017-17134-2
Sparks, A. N. (1979). Fall Armyworm Symposium: A review of the biology of the fall armyworm. Florida Entomologist, 82-87. https://doi.org/57356
Terenius, O., Papanicolaou, A., Garbutt, J. S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J. L., Barthel, A., Bebas, P., Bitra, K., Bravo, A., Chevalier, F., Collinge, D. P., Crava, C. M., de Maagd, R. A., Duvic, B., Erlandson, M., . . . Smagghe, G. (2011). RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol, 57(2), 231-245. https://doi.org/10.1016/j.jinsphys.2010.11.006
Toepfer, S., Fallet, P., Kajuga, J., Bazagwira, D., Mukundwa, I. P., Szalai, M., & Turlings, T. C. (2021). Streamlining leaf damage rating scales for the fall armyworm on maize. Journal of Pest Science, 94(4), 1075-1089. https://doi.org/10.1007/s10340-021-01359-2
Verdonckt, T. W., & Vanden Broeck, J. (2022). Methods for the cost-effective production of bacteria-derived double-stranded RNA for in vitro knockdown studies. Front Physiol, 13, 836106. https://doi.org/10.3389/fphys.2022.836106
Vilaplana, L., Pascual, N., Perera, N., & Bellés, X. (2007). Molecular characterization of an inhibitor of apoptosis in the Egyptian armyworm, Spodoptera littoralis, and midgut cell death during metamorphosis. Insect Biochemistry and Molecular Biology, 37(12), 1241-1248. https://doi.org/https://doi.org/10.1016/j.ibmb.2007.07.013
Wan, X. S., Shi, M. R., Xu, J., Liu, J. H., & Ye, H. (2021). Interference Efficiency and Effects of Bacterium-mediated RNAi in the Fall Armyworm (Lepidoptera: Noctuidae). J Insect Sci, 21(5). https://doi.org/10.1093/jisesa/ieab073
Yan, S., Qian, J., Cai, C., Ma, Z., Li, J., Yin, M., Ren, B., & Shen, J. (2020). Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. Journal of Pest Science, 93, 449-459. https://doi.org/10.1007/s10340-019-01157-x
Yang, Y. T., Lee, M. R., Lee, S. J., Kim, S., Nai, Y. S., & Kim, J. S. (2018). Tenebrio molitor Gram-negative-binding protein 3 (TmGNBP3) is essential for inducing downstream antifungal Tenecin 1 gene expression against infection with Beauveria bassiana JEF-007. Insect Sci, 25(6), 969-977. https://doi.org/10.1111/1744-7917.12482
Yao, Y., Lin, D. J., Cai, X. Y., Wang, R., Hou, Y. M., Hu, C. H., Gao, S. J., & Wang, J. D. (2022). Multiple dsRNases involved in exogenous dsRNA degradation of fall armyworm Spodoptera frugiperda. Front Physiol, 13, 850022. https://doi.org/10.3389/fphys.2022.850022
ZHANG, H.-M. (2019). Reports confirmed throughout Taiwan of crop-destroying fall armyworms. Taipei Times. https://www.taipeitimes.com/News/lang/archives/2019/06/16/2003716995
Zhang, L., Liu, B., Zheng, W., Liu, C., Zhang, D., Zhao, S., Li, Z., Xu, P., Wilson, K., Withers, A., Jones, C. M., Smith, J. A., Chipabika, G., Kachigamba, D. L., Nam, K., d'Alençon, E., Liu, B., Liang, X., Jin, M., . . . Xiao, Y. (2020). Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol Ecol Resour, 20(6), 1682-1696. https://doi.org/10.1111/1755-0998.13219
電子全文 電子全文(網際網路公開日期:20260901)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊