|
Agrawal, N., Dasaradhi, P. V., Mohmmed, A., Malhotra, P., Bhatnagar, R. K., & Mukherjee, S. K. (2003). RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev, 67(4), 657-685. https://doi.org/10.1128/mmbr.67.4.657-685.2003 Arimatsu, Y., Kotani, E., Sugimura, Y., & Furusawa, T. (2007). Molecular characterization of a cDNA encoding extracellular dsRNase and its expression in the silkworm, Bombyx mori. Insect Biochem Mol Biol, 37(2), 176-183. https://doi.org/10.1016/j.ibmb.2006.11.004 Bao, W., Li, A., Zhang, Y., Diao, P., Zhao, Q., Yan, T., Zhou, Z., Duan, H., Li, X., & Wuriyanghan, H. (2021). Improvement of host-induced gene silencing efficiency via polycistronic-tRNA-amiR expression for multiple target genes and characterization of RNAi mechanism in Mythimna separata. Plant Biotechnol J, 19(7), 1370-1385. https://doi.org/10.1111/pbi.13555 Boaventura, D., Buer, B., Hamaekers, N., Maiwald, F., & Nauen, R. (2021). Toxicological and molecular profiling of insecticide resistance in a Brazilian strain of fall armyworm resistant to Bt Cry1 proteins. Pest Manag Sci, 77(8), 3713-3726. https://doi.org/10.1002/ps.6061 Burtet, L. M., Bernardi, O., Melo, A. A., Pes, M. P., Strahl, T. T., & Guedes, J. V. (2017). Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Pest Manag Sci, 73(12), 2569-2577. https://doi.org/10.1002/ps.4660 Caccia, S., Astarita, F., Barra, E., Di Lelio, I., Varricchio, P., & Pennacchio, F. (2020). Enhancement of Bacillus thuringiensis toxicity by feeding Spodoptera littoralis larvae with bacteria expressing immune suppressive dsRNA. Journal of Pest Science, 93(1), 303-314. https://doi.org/10.1007/s10340-019-01140-6 Chen, S. L., Dai, S. M., Lu, K. H., & Chang, C. (2008). Female-specific doublesex dsRNA interrupts yolk protein gene expression and reproductive ability in oriental fruit fly, Bactrocera dorsalis (Hendel). Insect Biochem Mol Biol, 38(2), 155-165. https://doi.org/10.1016/j.ibmb.2007.10.003 Chisonga, C., Chipabika, G., Sohati, P. H., & Harrison, R. D. (2023). Understanding the impact of fall armyworm (Spodoptera frugiperda JE Smith) leaf damage on maize yields. Plos one, 18(6), e0279138. https://doi.org/10.1371/journal.pone.0279138 Cooper, A. M., Silver, K., Zhang, J., Park, Y., & Zhu, K. Y. (2019). Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Manag Sci, 75(1), 18-28. https://doi.org/10.1002/ps.5126 Das, S., Debnath, N., Cui, Y., Unrine, J., & Palli, S. R. (2015). Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: A comparative analysis. ACS Appl Mater Interfaces, 7(35), 19530-19535. https://doi.org/10.1021/acsami.5b05232 Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Early, R., & Godwin, J. (2017). Fall armyworm: impacts and implications for Africa. Outlooks on Pest Management, 28(5), 196-201. https://doi.org/10.1564/v28_oct_02 Dhandapani, R. K., Gurusamy, D., & Palli, S. R. (2022). Protamine-lipid-dsRNA nanoparticles improve RNAi efficiency in the fall armyworm, Spodoptera frugiperda. J Agric Food Chem, 70(22), 6634-6643. https://doi.org/10.1021/acs.jafc.2c00901 Ding, Y. F., Wei, J., Li, S., Pan, Y. T., Wang, L. H., & Wang, R. (2019). Host-guest interactions initiated supramolecular chitosan nanogels for selective intracellular drug delivery. ACS Appl Mater Interfaces, 11(32), 28665-28670. https://doi.org/10.1021/acsami.9b09059 Eigenbrod, T., & Dalpke, A. H. (2015). Bacterial RNA: An underestimated stimulus for innate immune responses. J Immunol, 195(2), 411-418. https://doi.org/10.4049/jimmunol.1500530 Emadi, F., Amini, A., Gholami, A., & Ghasemi, Y. (2017). Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Scientific Reports, 7(1), 42258. https://doi.org/10.1038/srep42258 Fan, Y., Song, H., Abbas, M., Wang, Y., Liu, X., Li, T., Ma, E., Zhu, K. Y., & Zhang, J. (2022). The stability and sequence cleavage preference of dsRNA are key factors differentiating RNAi efficiency between migratory locust and Asian corn borer. Insect Biochem Mol Biol, 143, 103738. https://doi.org/10.1016/j.ibmb.2022.103738 Flenniken, M. L., & Andino, R. (2013). Non-specific dsRNA-mediated antiviral response in the honey bee. Plos one, 8(10), e77263. https://doi.org/10.1371/journal.pone.0077263 Guan, R., Chen, Q., Li, H., Hu, S., Miao, X., Wang, G., & Yang, B. (2019). Knockout of the HaREase gene improves the stability of dsRNA and increases the sensitivity of Helicoverpa armigera to Bacillus thuringiensis toxin. Front Physiol, 10, 1368. https://doi.org/10.3389/fphys.2019.01368 Guan, R. B., Li, H. C., Fan, Y. J., Hu, S. R., Christiaens, O., Smagghe, G., & Miao, X. X. (2018). A nuclease specific to lepidopteran insects suppresses RNAi. J Biol Chem, 293(16), 6011-6021. https://doi.org/10.1074/jbc.RA117.001553 Gurusamy, D., Mogilicherla, K., & Palli, S. R. (2020). Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch Insect Biochem Physiol, 104(4), e21677. https://doi.org/10.1002/arch.21677 Gurusamy, D., Mogilicherla, K., Shukla, J. N., & Palli, S. R. (2020). Lipids help double-stranded RNA in endosomal escape and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch Insect Biochem Physiol, 104(4), e21678. https://doi.org/10.1002/arch.21678 Gutierrez-Moreno, R., Mota-Sanchez, D., Blanco, C. A., Chandrasena, D., Difonzo, C., Conner, J., Head, G., Berman, K., & Wise, J. (2020). Susceptibility of fall armyworms (Spodoptera frugiperda J.E.) from Mexico and Puerto rico to Bt proteins. Insects, 11(12). https://doi.org/10.3390/insects11120831 He, L., Huang, Y., & Tang, X. (2022). RNAi-based pest control: Production, application and the fate of dsRNA. Front Bioeng Biotechnol, 10, 1080576. https://doi.org/10.3389/fbioe.2022.1080576 Horikoshi, R. J., Vertuan, H., de Castro, A. A., Morrell, K., Griffith, C., Evans, A., Tan, J., Asiimwe, P., Anderson, H., José, M., Dourado, P. M., Berger, G., Martinelli, S., & Head, G. (2021). A new generation of Bt maize for control of fall armyworm (Spodoptera frugiperda). Pest Manag Sci, 77(8), 3727-3736. https://doi.org/10.1002/ps.6334 Idrees, A., Qadir, Z. A., Akutse, K. S., Afzal, A., Hussain, M., Islam, W., Waqas, M. S., Bamisile, B. S., & Li, J. (2021). Effectiveness of entomopathogenic fungi on immature stages and feeding performance of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Insects, 12(11). https://doi.org/10.3390/insects12111044 Jhang, J.-W., Chou, Y.-H., Wang, T.-H., Hsieh, M.-H., & Chiang, W.-H. (2022). One-pot green reduction and surface decoration of graphene oxide nanosheets with PEGylated chitosan for application in cancer photothermal therapy. Journal of the Taiwan Institute of Chemical Engineers, 134, 104359. https://doi.org/https://doi.org/10.1016/j.jtice.2022.104359 Kenis, M., Benelli, G., Biondi, A., Calatayud, P.-A., Day, R., Desneux, N., Harrison, R. D., Kriticos, D., Rwomushana, I., & Van den Berg, J. (2022). Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. https://doi.org/10.1127/entomologia/2022/1659 Kolge, H., Kadam, K., Galande, S., Lanjekar, V., & Ghormade, V. (2021). New frontiers in pest control: Chitosan nanoparticles-shielded dsRNA as an effective topical RNAi spray for gram podborer biocontrol. ACS Appl Bio Mater, 4(6), 5145-5157. https://doi.org/10.1021/acsabm.1c00349 Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262 Lück, S., Kreszies, T., Strickert, M., Schweizer, P., Kuhlmann, M., & Douchkov, D. (2019). siRNA-Finder (si-Fi) software for RNAi-target design and off-target prediction. Front Plant Sci, 10, 1023. https://doi.org/10.3389/fpls.2019.01023 Montezano, D. G., Sosa-Gómez, D. R., Specht, A., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. V., Peterson, J. A., & Hunt, T. E. (2018). Host plants of Spodoptera frugiperda (Lepidoptera : Noctuidae) in the Americas. African entomology, 26(2), 286-300. https://doi.org/doi:10.4001/003.026.0286 Nwokeoji, A. O., Kilby, P. M., Portwood, D. E., & Dickman, M. J. (2016). RNASwift: A rapid, versatile RNA extraction method free from phenol and chloroform. Anal Biochem, 512, 36-46. https://doi.org/10.1016/j.ab.2016.08.001 Pallis, S., Alyokhin, A., Manley, B., Rodrigues, T., Barnes, E., & Narva, K. (2023). Effects of low doses of a novel dsRNA-based biopesticide (Calantha) on the Colorado potato beetle. Journal of Economic Entomology, 116(2), 456-461. https://doi.org/10.1093/jee/toad034 Peng, Y., Wang, K., Zhu, G., Han, Q., Chen, J., Elzaki, M. E. A., Sheng, C., Zhao, C., Palli, S. R., & Han, Z. (2020). Identification and characterization of multiple dsRNases from a lepidopteran insect, the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Pestic Biochem Physiol, 162, 86-95. https://doi.org/10.1016/j.pestbp.2019.09.011 Peng, Y., Zhu, G.-H., Wang, K., Chen, J., Liu, X., Wu, M., Zhao, C., Xiao, H., Palli, S. R., & Han, Z. (2021). Knockout of SldsRNase1 and SldsRNase2 revealed their function in dsRNA degradation and contribution to RNAi efficiency in the tobacco cutworm, Spodoptera litura. Journal of Pest Science, 94(4), 1449-1460. https://doi.org/10.1007/s10340-021-01335-w Pesch, Y.-Y., Riedel, D., Patil, K. R., Loch, G., & Behr, M. (2016). Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Scientific Reports, 6(1), 18340. https://doi.org/10.1038/srep18340 Prentice, K., Smagghe, G., Gheysen, G., & Christiaens, O. (2019). Nuclease activity decreases the RNAi response in the sweetpotato weevil Cylas puncticollis. Insect Biochem Mol Biol, 110, 80-89. https://doi.org/10.1016/j.ibmb.2019.04.001 Ramaseshadri, P., Segers, G., Flannagan, R., Wiggins, E., Clinton, W., Ilagan, O., McNulty, B., Clark, T., & Bolognesi, R. (2013). Physiological and cellular responses caused by RNAi- mediated suppression of Snf7 orthologue in western corn rootworm (Diabrotica virgifera virgifera) larvae. Plos one, 8(1), e54270. https://doi.org/10.1371/journal.pone.0054270 Reinders, J. D., Moar, W. J., Head, G. P., Hassan, S., & Meinke, L. J. (2023). Effects of SmartStax® and SmartStax® PRO maize on western corn rootworm (Diabrotica virgifera virgifera LeConte) larval feeding injury and adult life history parameters. Plos one, 18(7), e0288372. https://doi.org/10.1371/journal.pone.0288372 Shi, J. F., Mu, L. L., Chen, X., Guo, W. C., & Li, G. Q. (2016). RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say). Int J Biol Sci, 12(11), 1319-1331. https://doi.org/10.7150/ijbs.14464 Shukla, J. N., Kalsi, M., Sethi, A., Narva, K. E., Fishilevich, E., Singh, S., Mogilicherla, K., & Palli, S. R. (2016). Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol, 13(7), 656-669. https://doi.org/10.1080/15476286.2016.1191728 Singh, I. K., Singh, S., Mogilicherla, K., Shukla, J. N., & Palli, S. R. (2017). Comparative analysis of double-stranded RNA degradation and processing in insects. Scientific Reports, 7(1), 17059. https://doi.org/10.1038/s41598-017-17134-2 Sparks, A. N. (1979). Fall Armyworm Symposium: A review of the biology of the fall armyworm. Florida Entomologist, 82-87. https://doi.org/57356 Terenius, O., Papanicolaou, A., Garbutt, J. S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J. L., Barthel, A., Bebas, P., Bitra, K., Bravo, A., Chevalier, F., Collinge, D. P., Crava, C. M., de Maagd, R. A., Duvic, B., Erlandson, M., . . . Smagghe, G. (2011). RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol, 57(2), 231-245. https://doi.org/10.1016/j.jinsphys.2010.11.006 Toepfer, S., Fallet, P., Kajuga, J., Bazagwira, D., Mukundwa, I. P., Szalai, M., & Turlings, T. C. (2021). Streamlining leaf damage rating scales for the fall armyworm on maize. Journal of Pest Science, 94(4), 1075-1089. https://doi.org/10.1007/s10340-021-01359-2 Verdonckt, T. W., & Vanden Broeck, J. (2022). Methods for the cost-effective production of bacteria-derived double-stranded RNA for in vitro knockdown studies. Front Physiol, 13, 836106. https://doi.org/10.3389/fphys.2022.836106 Vilaplana, L., Pascual, N., Perera, N., & Bellés, X. (2007). Molecular characterization of an inhibitor of apoptosis in the Egyptian armyworm, Spodoptera littoralis, and midgut cell death during metamorphosis. Insect Biochemistry and Molecular Biology, 37(12), 1241-1248. https://doi.org/https://doi.org/10.1016/j.ibmb.2007.07.013 Wan, X. S., Shi, M. R., Xu, J., Liu, J. H., & Ye, H. (2021). Interference Efficiency and Effects of Bacterium-mediated RNAi in the Fall Armyworm (Lepidoptera: Noctuidae). J Insect Sci, 21(5). https://doi.org/10.1093/jisesa/ieab073 Yan, S., Qian, J., Cai, C., Ma, Z., Li, J., Yin, M., Ren, B., & Shen, J. (2020). Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. Journal of Pest Science, 93, 449-459. https://doi.org/10.1007/s10340-019-01157-x Yang, Y. T., Lee, M. R., Lee, S. J., Kim, S., Nai, Y. S., & Kim, J. S. (2018). Tenebrio molitor Gram-negative-binding protein 3 (TmGNBP3) is essential for inducing downstream antifungal Tenecin 1 gene expression against infection with Beauveria bassiana JEF-007. Insect Sci, 25(6), 969-977. https://doi.org/10.1111/1744-7917.12482 Yao, Y., Lin, D. J., Cai, X. Y., Wang, R., Hou, Y. M., Hu, C. H., Gao, S. J., & Wang, J. D. (2022). Multiple dsRNases involved in exogenous dsRNA degradation of fall armyworm Spodoptera frugiperda. Front Physiol, 13, 850022. https://doi.org/10.3389/fphys.2022.850022 ZHANG, H.-M. (2019). Reports confirmed throughout Taiwan of crop-destroying fall armyworms. Taipei Times. https://www.taipeitimes.com/News/lang/archives/2019/06/16/2003716995 Zhang, L., Liu, B., Zheng, W., Liu, C., Zhang, D., Zhao, S., Li, Z., Xu, P., Wilson, K., Withers, A., Jones, C. M., Smith, J. A., Chipabika, G., Kachigamba, D. L., Nam, K., d'Alençon, E., Liu, B., Liang, X., Jin, M., . . . Xiao, Y. (2020). Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol Ecol Resour, 20(6), 1682-1696. https://doi.org/10.1111/1755-0998.13219
|