|
[1] O. I. Al-Sanjary, A. A. Ahmed, and G. Sulong. Development of a video tampering dataset for forensic investigation. In Forensic Science International, volume 266, pages 565–572, 2016.
[2] D. Bank, N. Koenigstein, and R. Giryes. Autoencoders. Machine learning for data science handbook: Data mining and knowledge discovery handbook, pages 353–374, 2023.
[3] Bradski, G., & Kaehler, A. Learning OpenCV: Computer vision with the OpenCV library. O’Reilly Media, Inc, 2008.
[4] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.
[5] A. Bulat and G. Tzimiropoulos. How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 1021–1030, 2017.
[6] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou. Facewarehouse: A 3D facial expression database for visual computing. IEEE Transactions on Visualization and Computer Graphics, 20(3):413–425, 2013.
[7] F. Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1251–1258, 2017.
[8] D. Community. Deepfakes faceswap. https://github.com/deepfakes/faceswap. Accessed: June 11, 2023.
[9] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273–297, 1995.
[10] H. Dang, F. Liu, J. Stehouwer, X. Liu, and A. K. Jain. On the detection of digital face manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 5781–5790, 2020.
[11] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou. Retinaface: Single-shot multi-level face localisation in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 5203–5212, 2020.
[12] B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, and C. C. Ferrer. The deepfake detection challenge (DFDC) dataset. In arXiv preprint arXiv:2006.07397, 2020.
[13] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. C. Ferrer. The deepfake detection challenge (DFDC) preview dataset. In arXiv preprint arXiv:1910.08854, 2019.
[14] Dowson, D. C., & Landau, B. The Fréchet distance between multivariate normal distributions. Journal of Multivariate Analysis, 12(3), 450-455, 1982.
[15] C. Frith. Role of facial expressions in social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535):3453–3458, 2009.
[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, and Y. Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–144, 2014.
[17] L. Guarnera, O. Giudice, and S. Battiato. Deepfake detection by analyzing convolutional traces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 666–667, 2020.
[18] Hore, A., & Ziou, D. Image quality metrics: PSNR vs. SSIM. 2010 20th International Conference on Pattern Recognition, pages 2366-2369, 2004.
[19] Y. Hu, L. Manikonda, and S. Kambhampati. What we Instagram: A first analysis of Instagram photo content and user types. In Proceedings of the International AAAI Conference on Web and Social Media, volume 8, pages 595–598, 2014.
[20] D. Huang and F. De La Torre. Facial action transfer with personalized bilinear regression. In Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part II, pages 144–158. Springer Berlin Heidelberg, 2012.
[21] X. Huang and S. Belongie. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 1501–1510, 2018.
[22] N. Hulzebosch, S. Ibrahimi, and M. Worring. Detecting CNN-generated facial images in real-world scenarios. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 642–643, 2020.
[23] V. Iglovikov and A. Shvets. Ternausnet: U-net with VGG11 encoder pre-trained on ImageNet for image segmentation. arXiv preprint arXiv:1801.05746, 2018.
[24] L. Jiang, R. Li, W. Wu, C. Qian, and C. C. Loy. Deeperforensics-1.0: A large-scale dataset for real-world face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 2889-2898, 2020.
[25] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4401–4410, 2019.
[26] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and improving the image quality of StyleGAN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8110–8119, 2020.
[27] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
[28] P. Korshunov and S. Marcel. Deepfakes: A new threat to face recognition? Assessment and detection. In arXiv preprint arXiv:1812.08685, 2018.
[29] P. Kwon, J. You, G. Nam, S. Park, and G. Chae. KoDF: A large-scale Korean deepfake detection dataset. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 10744–10753, 2021.
[30] T. N. Le, H. H. Nguyen, J. Yamagishi, and I. Echizen. Openforensics: Large-scale challenging dataset for multi-face forgery detection and segmentation in the wild. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 10117–10127, 2021.
[31] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989.
[32] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu. Celeb-DF: A large-scale challenging dataset for deepfake forensics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3207–3216, 2020.
[33] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. Advances in Neural Information Processing Systems, 30, 2017.
[34] Marek Kowalski. FaceSwap. https://github.com/MarekKowalski/FaceSwap. Accessed: June 11, 2023.
[35] F. Marra, C. Saltori, G. Boato, and L. Verdoliva. Incremental learning for the detection and classification of GAN-generated images. In 2019 IEEE International Workshop on Information Forensics and Security (WIFS), pages 1–6, 2019.
[36] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.
[37] B. Moysis, D. Christodoulou, A. Tefas, and N. Nikolaidis. Machine learning interpretability with shapley values and limited data. arXiv preprint arXiv:2002.06675, 2020.
[38] H. Nguyen, J. Yamagishi, I. Echizen, and J. F. Alegre. Fdft: A fake digital facial texture detection method based on fourier analysis. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1–9, 2017.
[39] M. Nitzan, S. Caspi, L. Wolf, and M. Irani. Face identity disentanglement via latent space mapping. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 7049–7059, 2020.
[40] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–1359, 2010.
[41] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, and S. F. Xu. Automatic differentiation in PyTorch. In Advances in Neural Information Processing Systems (NIPS) Workshop, 2017.
[42] C. Perez, S. Ivaldi, and M. S. Otaduy. Human perception of dynamic tactile textures. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4545–4553, 2020.
[43] D. Ponce-Lopez, R. Huang, S. Winkler, J. See, S. Winkler, and R. Subramanian. DAiSEE: Towards user engagement recognition in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 1664–1672, 2017.
[44] M. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.
[45] M. G. Richard, M. H. Richard, and K. Y. Richard. Performance modeling of deep learning-based image super-resolution on distributed platforms. arXiv preprint arXiv:1910.07292, 2019.
[46] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 815–823, 2015.
[47] D. B. Shankar and J. H. Hays. Urban scene understanding from a single view based on what we expect to see. arXiv preprint arXiv:1910.07295, 2019.
[48] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection in single images using multiview bootstrapping. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1145–1153, 2017.
[49] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[50] L. Song, J. Zhao, and H. Xie. Attention-driven global feature and local structure learning for image emotion classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 620–621, 2020.
[51] A. Sohn, K. Aizawa, T. Ogawa, and S. L. Toward. Image inpainting using a flow-based deep generative model. In arXiv preprint arXiv:2001.04879, 2020.
[52] M. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.
[53] M. Tan and Q. V. Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning (ICML), pages 6105–6114, 2019.
[54] R. Tatsumi, Y. Kanazawa, and Y. Kashima. DeepFake image detection via machine learning. arXiv preprint arXiv:1911.06878, 2019.
[55] L. Thies, P. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner. Face2Face: Real-time face capture and reenactment of RGB videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2387–2395, 2016.
[56] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner. Deferred neural rendering: Image synthesis using neural textures. ACM Transactions on Graphics (TOG), 38(4):66, 2019.
[57] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating videos with scene dynamics. In Advances in Neural Information Processing Systems (NIPS), pages 613–621, 2016.
[58] C. Wang, Z. Wu, and C. Liang. Robust deepfake detection via deep learning models. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI), pages 3583–3589, 2020.
[59] Y. Wu, J. Zhang, and T. Lu. A comprehensive survey on deep learning methods for deepfake detection. IEEE Access, 9:83903–83924, 2021.
[60] Z. Wu, C. Shen, and A. V. D. Hengel. Wider or deeper: Revisiting the resnet model for visual recognition. arXiv preprint arXiv:1611.10080, 2016.
[61] M. Zhang, X. Fan, and D. Zhang. Identity-invariant deepfake detection with natural face modelling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 666–667, 2020.
[62] X. Zhang, Y. Zhu, X. Dai, M. K. Han, C. Yuan, Y. Xie, Y. Dai, Y. Wei, and Y. Lu. Knowledge distillation from cross-task representations for action detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 7036–7045, 2020.
[63] L. Zheng, W. Li, and Y. Gong. Towards open set person re-identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(7):1690–1705, 2019.
[64] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
|