|
[1] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. DiffuSeq: Sequence to sequence text generation with diffusion models. In International Conference on Learning Representations, ICLR, 2023. [2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33:6840–6851, 2020. [3] Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tat- sunori Hashimoto. Diffusion-lm improves controllable text generation. ArXiv, abs/2205.14217, 2022. [4] Yueling Liu, Shengteng Jiang, Yichi Zhang, Kuo Cao, Li Zhou, Boon-Chong Seet, Haitao Zhao, and Jibo Wei. Extended context-based semantic commu- nication system for text transmission. Digital Communications and Networks, 2022. [5] Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch, Will Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, et al. Self-conditioned embedding diffusion for text generation. arXiv preprint arXiv:2211.04236, 2022. [6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. [7] Huiqiang Xie, Zhijin Qin, Geoffrey Ye Li, and Biing-Hwang Juang. Deep learning enabled semantic communication systems. IEEE Transactions on Signal Processing, 69:2663–2675, 2021.
|