|
[1]Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Jan. 1998, doi: 10.1109/5.726791. [2]S. Liu and W. Deng, “Very deep convolutional neural network based image classification using small training sample size,” in 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Jan. 2015, pp. 730–734. doi: 10.1109/ACPR.2015.7486599. [3]K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90. [4]F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 1800–1807. doi: 10.1109/CVPR.2017.195. [5]S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory of learning from different domains,” Mach Learn, vol. 79, no. 1, pp. 151–175, May 2010, doi: 10.1007/s10994-009-5152-4. [6]Y. Ganin et al., “Domain-adversarial training of neural networks,” in Domain Adaptation in Computer Vision Applications, G. Csurka, Ed., in Advances in Computer Vision and Pattern Recognition. , Cham: Springer International Publishing, 2017, pp. 189–209. doi: 10.1007/978-3-319-58347-1_10. [7]E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative domain adaptation,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp. 2962–2971. doi: 10.1109/CVPR.2017.316. [8]M. Long, Z. CAO, J. Wang, and M. I. Jordan, “Conditional adversarial domain adaptation,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2018. Accessed: Aug. 06, 2024. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2018/hash/ab88b15733f543179858600245108dd8-Abstract.html [9]K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan, “Domain separation networks,” Aug. 21, 2016, arXiv: arXiv:1608.06019. doi: 10.48550/arXiv.1608.06019. [10]A. Sharma, T. Kalluri, and M. Chandraker, “Instance level affinity-based transfer for unsupervised domain adaptation,” Apr. 02, 2021, arXiv: arXiv:2104.01286. doi: 10.48550/arXiv.2104.01286. [11]N. Xiao and L. Zhang, “Dynamic weighted learning for unsupervised domain adaptation,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA: IEEE, Jun. 2021, pp. 15237–15246. doi: 10.1109/CVPR46437.2021.01499. [12]J. Na, H. Jung, H. J. Chang, and W. Hwang, “FixBi: Bridging domain spaces for unsupervised domain adaptation,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2021, pp. 1094–1103. doi: 10.1109/CVPR46437.2021.00115. [13]T. Westfechtel, H.-W. Yeh, D. Zhang, and T. Harada, “Gradual source domain expansion for unsupervised domain adaptation,” in 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA: IEEE, Jan. 2024, pp. 1935–1944. doi: 10.1109/WACV57701.2024.00195. [14]S. Lee, S. Cho, and S. Im, “DRANet: Disentangling representation and adaptation networks for unsupervised cross-domain adaptation,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA: IEEE, Jun. 2021, pp. 15247–15256. doi: 10.1109/CVPR46437.2021.01500. [15]H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” Apr. 27, 2018, arXiv: arXiv:1710.09412. doi: 10.48550/arXiv.1710.09412. [16]M. Xu et al., “Adversarial domain adaptation with domain mixup,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, Art. no. 04, Apr. 2020, doi: 10.1609/aaai.v34i04.6123. [17]Y. Wu, D. Inkpen, and A. El-Roby, “Dual mixup regularized learning for adversarial domain adaptation,” in Computer Vision – ECCV 2020, vol. 12374, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds., in Lecture Notes in Computer Science, vol. 12374. , Cham: Springer International Publishing, 2020, pp. 540–555. doi: 10.1007/978-3-030-58526-6_32. [18]S. Yan, H. Song, N. Li, L. Zou, and L. Ren, “Improve unsupervised domain adaptation with mixup training,” Jan. 02, 2020, arXiv: arXiv:2001.00677. doi: 10.48550/arXiv.2001.00677. [19]J. Na, D. Han, H. J. Chang, and W. Hwang, “Contrastive vicinal space for unsupervised domain adaptation,” in Computer Vision – ECCV 2022, vol. 13694, S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds., in Lecture Notes in Computer Science, vol. 13694. , Cham: Springer Nature Switzerland, 2022, pp. 92–110. doi: 10.1007/978-3-031-19830-4_6. [20]V. Gliner, V. Makarov, A. I. Avetisyan, A. Schuster, and Y. Yaniv, “Using domain adaptation for classification of healthy and disease conditions from mobile-captured images of standard 12-lead electrocardiograms,” Sci Rep, vol. 13, no. 1, p. 14023, Aug. 2023, doi: 10.1038/s41598-023-40693-6. [21]Y.-C. Lo, I.-F. Chung, S.-N. Guo, M.-C. Wen, and C.-F. Juang, “Cycle-consistent GAN-based stain translation of renal pathology images with glomerulus detection application,” Applied Soft Computing, vol. 98, p. 106822, Jan. 2021, doi: 10.1016/j.asoc.2020.106822. [22]J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using Cycle-Consistent adversarial networks,” in 2017 IEEE International Conference on Computer Vision (ICCV), Venice: IEEE, Oct. 2017, pp. 2242–2251. doi: 10.1109/ICCV.2017.244. [23]C.-F. Juang, Y.-W. Chuang, G.-W. Lin, I.-F. Chung, and Y.-C. Lo, “Deep learning-based glomerulus detection and classification with generative morphology augmentation in renal pathology images,” Computerized Medical Imaging and Graphics, vol. 115, p. 102375, Jul. 2024, doi: 10.1016/j.compmedimag.2024.102375. [24]X. Long, J. Liu, and X. Hou, “Domain adaptation of digital pathology images using joint stain color and image quality constraints,” in 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia: IEEE, Oct. 2023, pp. 1805–1809. doi: 10.1109/ICIP49359.2023.10222270. [25]E. Othman, Y. Bazi, F. Melgani, H. Alhichri, N. Alajlan, and M. Zuair, “Domain adaptation network for cross-scene classification,” IEEE Trans. Geosci. Remote Sensing, vol. 55, no. 8, pp. 4441–4456, Aug. 2017, doi: 10.1109/TGRS.2017.2692281. [26]Z. Zheng, Y. Zhong, Y. Su, and A. Ma, “Domain adaptation via a task-specific classifier framework for remote sensing cross-scene classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022, doi: 10.1109/TGRS.2022.3151689. [27]R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual explanations from deep networks via gradient-based localization,” in 2017 IEEE International Conference on Computer Vision (ICCV), Oct. 2017, pp. 618–626. doi: 10.1109/ICCV.2017.74. [28]D. Hutchison et al., “Adapting visual category models to new domains,” in Computer Vision – ECCV 2010, vol. 6314, K. Daniilidis, P. Maragos, and N. Paragios, Eds., in Lecture Notes in Computer Science, vol. 6314. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 213–226. doi: 10.1007/978-3-642-15561-1_16. [29]H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan, “Deep hashing network for unsupervised domain adaptation”. [30]M. Mirza and S. Osindero, “Conditional generative adversarial nets,” Nov. 06, 2014, arXiv: arXiv:1411.1784. doi: 10.48550/arXiv.1411.1784. [31]Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,” in Advances in Neural Information Processing Systems, MIT Press, 2004. Accessed: Aug. 07, 2024. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2004/hash/96f2b50b5d3613adf9c27049b2a888c7-Abstract.html [32]S. Li et al., “Learning to reconstruct crack profiles for eddy current nondestructive testing,” Oct. 28, 2019, arXiv: arXiv:1910.08721. doi: 10.48550/arXiv.1910.08721. [33]L. Liu et al., “On the variance of the adaptive learning rate and beyond,” Oct. 25, 2021, arXiv: arXiv:1908.03265. doi: 10.48550/arXiv.1908.03265. [34]M. R. Zhang, J. Lucas, G. Hinton, and J. Ba, “Lookahead optimizer: k steps forward, 1 step back,” Dec. 03, 2019, arXiv: arXiv:1907.08610. doi: 10.48550/arXiv.1907.08610. [35]I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm restarts,” May 03, 2017, arXiv: arXiv:1608.03983. Accessed: Aug. 08, 2024. [Online]. Available: http://arxiv.org/abs/1608.03983 [36]J. Zhu, H. Bai, and L. Wang, “Patch-Mix transformer for unsupervised domain adaptation: A game perspective,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada: IEEE, Jun. 2023, pp. 3561–3571. doi: 10.1109/CVPR52729.2023.00347.
|