跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 18:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪昇渝
研究生(外文):Sheng-Yu Hung
論文名稱:近場微波充電系統之研製
論文名稱(外文):Design and Implementation of Near-Field Microwave Charging System
指導教授:林俊良林俊良引用關係
指導教授(外文):Chun-Liang Lin
口試委員:黃清輝李慶鴻
口試日期:2024-07-30
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:89
中文關鍵詞:無線功率傳輸微波充電無線供電通訊網路物聯網
外文關鍵詞:Wireless power transmissionMicrowave chargingWireless powered transmission networkInternet of things
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在物聯網迅速發展的背景下,各類電子產品與應用日新月異,將各種設備透過網路相連接,實現智慧化控制和資料交換成為必要。其中,對無線裝置的能源供應成為了關鍵技術挑戰。
傳統的WPT系統採用非輻射性WPT方法,在距離上存在明確上限,並且存在線圈對準的嚴格限制,不利於許多場合的開發與應用。本研究之微波充電系統採用微波功率傳輸(MPT)方法,此類方法具備更長距離傳輸與穿透性強等優點,適合後續開發可攜帶設備與醫療植入物之應用。所提出之系統透過微波的電磁輻射將能量從來源端(一次側)傳輸至負載端(二次側)進行儲能。二次側的通訊設備可以藉由儲存的電能啟動並將其中所包含的資料與訊息回傳至一次側。
過去的結合了資訊傳輸功能的微波充電研究中,需要額外的天線裝置方能完成資訊傳輸,大幅佔用空間。本研究之特色在於微波充電與通訊功能皆工作於同一操作頻率,並設計使二次側僅需使用一組天線,可有效減少所需的佔用空間,這對於醫療植入物的開發尤為重要。且本研究之系統工作頻率為2.418GHz,遵循國際電信聯盟提出的無線電規則指定的超高頻ISM頻段(2.4 - 2.5GHz)。包含Wi-Fi、藍芽在內的各項常用無線區域網路技術適用於該頻段,因此具備更好的通用性與應用前景。
With the rapid development of the Internet of Things (IoT), connecting various devices through networks for smart control and data exchange has become essential. Energy supply for wireless devices is a key technical challenge.
Traditional Wireless Power Transfer (WPT) systems using non-radiative methods have clear distance limits and strict coil alignment requirements, which hinder their development and application in many scenarios. This thesis proposes a microwave power transfer (MPT) system, which offers longer transmission distances and stronger penetration, making it suitable for portable devices and medical implants. The system transfers energy from the source (primary side) to the load (secondary side) via microwave electromagnetic radiation for energy storage. The secondary side communication device can use the stored energy to activate and transmit data back to the primary side.
Previous research on microwave charging with data transmission required additional antennas, occupying significant space. This thesis features both microwave charging and communication at the same operating frequency, with the secondary side designed to use a single transceiver antenna, effectively reducing space requirements—critical for medical implants. The system operates at 2.418GHz, within the ultra-high frequency ISM band (2.4 - 2.5GHz) designated by ITU radio regulations. Common wireless technologies like Wi-Fi and Bluetooth operate in this band, offering better compatibility and application prospects.
摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables ix
Chapter 1. Introduction 1
1.1 Overview 1
1.2 Literature Review 2
1.3 Research Motivation and Objectives 3
1.4 Contribution 5
1.5 Overview 6
Chapter 2. WPT Technology 7
2.1 Classifications of WPT System 9
2.1.1 Near-Field WPT 9
2.1.2 Far-Field WPT 12
2.2 Microwave Power Transmission 15
Chapter 3. MPT System 17
3.1 MPT Architecture 19
3.2 Antenna Basic Introduction 20
3.2.1 Frequency Bandwidth 20
3.2.2 Antenna Gain 20
3.2.3 VSWR 22
3.2.4 Polarization 22
3.3 Matching Network Principle 24
3.4 Basic RF-DC Rectifier Architecture 29
3.4.1 Half-Wave Voltage Doubler Circuit 29
3.4.2 Full-Wave Voltage Doubler Circuit 31
3.4.3 Cockcroft-Walton Charge Pump Circuit 34
3.4.4 Dickson Charge Pump Circuit 34
3.5 Rectifier Components 37
3.5.1 Microstrip Line 37
3.5.2 Schottky Diode 38
3.5.3 Filter Capacitor 41
3.5.4 Load Resistance 41
3.6 Data Transmission 42
3.6.1 RF Circulator 42
3.6.2 Wi-Fi Technology 43
3.6.3 WebSocket Protocol 45
Chapter 4. System Design 48
4.1 System Hardware 48
4.2 Design of RF-DC Rectifier 54
4.3 System Software 61
4.4 Summary of Operation 62
Chapter 5. Experimental Results 64
5.1 RF-DC Rectifier Measurement 64
5.2 System Experiment & Result 70
Chapter 6. Conclusions 83
References 85
[1] A. Mahesh, B. Chokkalingam and L. Mihet-Popa, "Inductive Wireless Power Transfer Charging for Electric Vehicles–A Review," in IEEE Access, vol. 9, pp. 137667-137713, Sep. 2021.
[2] M. Tavana, M. Ozger, A. Baltaci, B. Schleicher, D. Schupke and C. Cavdar, "Wireless Power Transfer for Aircraft IoT Applications: System Design and Measurements," in IEEE Internet of Things Journal, vol. 8, no. 15, pp. 11834-11846, Aug. 2021.
[3] Z. Zhang and B. Zhang, "Omnidirectional and Efficient Wireless Power Transfer System for Logistic Robots," in IEEE Access, vol. 8, pp. 13683-13693, Jan. 2020.
[4] N. Nguyen, N. Ha-Van and C. Seo, "Midfield Wireless Power Transfer for Deep-Tissue Biomedical Implants," in IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 12, pp. 2270-2274, Dec. 2020.
[5] E. G. Kilinc et al., "A System for Wireless Power Transfer and Data Communication of Long-Term Bio-Monitoring," in IEEE Sensors Journal, vol. 15, no. 11, pp. 6559-6569, Nov. 2015.
[6] S. Inamdar and J. Fernandes, "Review of Wireless Charging Technology For Electric Vehicle," 2022 IEEE 10th Power India International Conference (PIICON), pp. 1-5, Nov. 2022.
[7] S. Roy, A. N. M. W. Azad, S. Baidya, M. K. Alam and F. Khan, "Powering Solutions for Biomedical Sensors and Implants Inside the Human Body: A Comprehensive Review on Energy Harvesting Units, Energy Storage, and Wireless Power Transfer Techniques," in IEEE Transactions on Power Electronics, vol. 37, no. 10, pp. 12237-12263, Oct. 2022.
[8] D. Belo, D. C. Ribeiro, P. Pinho and N. Borges Carvalho, "A Selective, Tracking, and Power Adaptive Far-Field Wireless Power Transfer System," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 9, pp. 3856-3866, Sep. 2019.
[9] A. Basir and H. Yoo, "Efficient Wireless Power Transfer System With a Miniaturized Quad-Band Implantable Antenna for Deep-Body Multitasking Implants," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1943-1953, May. 2020.
[10] Xiaoqiang Gu, Erika Vandelle, G. Ardila, T. Vuong, Ke Wu et al., "Environment-Aware Adaptive Energy Harvesters for IoT Applications," IEEE MTT-S International Wireless Symposium, May. 2019.
[11] J. Kim, B. Clerckx and P. D. Mitcheson, "Experimental Analysis of Harvested Energy and Throughput Trade-off in a Realistic SWIPT System," 2019 IEEE Wireless Power Transfer Conference (WPTC), pp. 1-5, Aug. 2019.
[12] Y. T. Chang, S. Claessens, S. Pollin and D. Schreurs, "A Wideband Efficient Rectifier Design for SWIPT," 2019 IEEE Wireless Power Transfer Conference (WPTC), pp. 26-29, 2019.
[13] V. S. Silva, H. P. Paz, I. R. S. Casella, C. E. Capovilla and M. C. E. Yagoub, "Design of a 915 MHz SWIPT Integrated Receiver Based on Intermodulated Signals," 2023 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), pp. 220-222, 2023.
[14] M. Gonzalez et al., "Technical and Ecological Limits of 2.45-GHz Wireless Power Transfer for Battery-Less Sensors," in IEEE Internet of Things Journal, vol. 10, no. 17, pp. 15431-15442, Sept. 2023.
[15] G. Paolini, A. Quddious, D. Chatzichristodoulou, D. Masotti, S. Nikolaou and A. Costanzo, "An Energy-Autonomous SWIPT RFID Tag for Communication in the 2.4 GHz ISM Band," 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), pp. 1-4, Jan. 2022.
[16] H. Lyu, Z. Wang and A. Babakhani, "A UHF/UWB Hybrid RFID Tag With a 51-m Energy-Harvesting Sensitivity for Remote Vital-Sign Monitoring," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 11, pp. 4886-4895, Nov. 2020.
[17] S. N. Daskalakis, G. Goussetis, S. D. Assimonis, M. M. Tentzeris and A. Georgiadis, "A uW Backscatter-Morse-Leaf Sensor for Low-Power Agricultural Wireless Sensor Networks," in IEEE Sensors Journal, vol. 18, no. 19, pp. 7889-7898, Oct. 2018.
[18] S. Dey, O. Salim, H. Masoumi and N. C. Karmakar, "A Novel UHF RFID Sensor Based Crack Detection Technique for Coal Mining Conveyor Belt," in IEEE Journal of Radio Frequency Identification, vol. 6, pp. 19-30, Jul. 2021.
[19] K. Jin and W. Zhou, "Wireless Laser Power Transmission: A Review of Recent Progress," in IEEE Transactions on Power Electronics, vol. 34, no. 4, pp. 3842-3859, April. 2019.
[20] H. Feng, R. Tavakoli, O. C. Onar and Z. Pantic, "Advances in High-Power Wireless Charging Systems: Overview and Design Considerations," in IEEE Transactions on Transportation Electrification, vol. 6, no. 3, pp. 886-919, Sept. 2020.
[21] L. Smith and S. Lim, "Assessment of Antenna Element Designs for Radiative Near-Field Wireless Power Transfer," 2020 SoutheastCon, pp. 1-2 , Mar. 2020.
[22] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed, John Wiley & Sons, 2016.
[23] H. Feng, R. Tavakoli, O. C. Onar and Z. Pantic, "Advances in High-Power Wireless Charging Systems: Overview and Design Considerations," in IEEE Transactions on Transportation Electrification, vol. 6, no. 3, pp. 886-919, Sept. 2020
[24] H. T. Friis, "A Note on a Simple Transmission Formula," in Proceedings of the IRE, vol. 34, no. 5, pp. 254-256, May, 1946.
[25] Nannapaneni Narayana Rao, Elements of Engineering Electromagnetics, 6th ed, Pearson Education, Inc, 2006.
[26] H. You, M. Yuan, R. Das, H. Heidari and R. Ghannam, "An Efficient RF-DC Rectifier Design for RF Energy Harvesting Systems," 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 1-4, 2020.
[27] C. R. Valenta and G. D. Durgin, "Harvesting Wireless Power: Survey of Energy-Harvester Conversion Efficiency in Far-Field, Wireless Power Transfer Systems," in IEEE Microwave Magazine, vol. 15, no. 4, pp. 108-120, June. 2014.
[28] B. R. Marshall, M. M. Morys and G. D. Durgin, "Parametric analysis and design guidelines of RF-to-DC Dickson charge pumps for RFID energy harvesting," 2015 IEEE International Conference on RFID (RFID), pp. 32-39, 2015.
[29] Jhonatan B. de Souza, Rafael S. Macedo, Rog ˆ erio Casagrande, Daniel D. Silveira, ´ Alvaro A. M. Medeiros, "Estratégia de Projeto Utilizando Linhas de Microfita para Circuito de Colheita de Energia de RF, " Sept. 2019.
[30] M. M. Al-Azawy and F. Sari, "Analysis of Dickson Voltage Multiplier for RF Energy Harvesting," 2019 1st Global Power, Energy and Communication Conference (GPECOM), pp. 10-14, 2019.
[31] Louie Pylarinos and Edward S. Rogers, “Charge Pumps: An Overview,” 2003.
[32] David M. Pozar, Microwave Engineering, 4th ed, John Wiley & Sons, Inc, 2012.
[33] E. O. Hammerstad, "Equations for Microstrip Circuit Design," 1975 5th European Microwave Conference, pp. 268-272, 1975.
[34] J. O. McSpadden, Lu Fan and Kai Chang, "Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna," in IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2053-2060, Dec. 1998.
[35] M. Lamkimel, N. Naja, A. Jamali and A. Yahyaoui, "The Internet of Things: Overview of the essential elements and the new enabling technology 6LoWPAN," 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD), pp. 142-147, 2018.
[36] Q. Awais, Y. Jin, H. T. Chattha, M. Jamil, H. Qiang and B. A. Khawaja, "A Compact Rectenna System With High Conversion Efficiency for Wireless Energy Harvesting," in IEEE Access, vol. 6, pp. 35857-35866, 2018.
電子全文 電子全文(網際網路公開日期:20290826)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top