|
[1]J. C. de Groot, F.-E. de Leeuw, M. Oudkerk, A. Hofman, J. Jolles, and M. M. B. Breteler, “Cerebral White Matter Lesions and Depressive Symptoms in Elderly Adults,” Arch. Gen. Psychiatry, vol. 57, no. 11, pp. 1071–1076, Nov. 2000, doi: 10.1001/archpsyc.57.11.1071. [2]F. E. de Leeuw et al., “Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study,” J. Neurol. Neurosurg. Psychiatry, vol. 70, no. 1, pp. 9–14, Jan. 2001, doi: 10.1136/jnnp.70.1.9. [3]F. Fazekas et al., “Pathologic correlates of incidental MRI white matter signal hyperintensities,” Neurology, vol. 43, no. 9, pp. 1683–1689, Sep. 1993, doi: 10.1212/wnl.43.9.1683. [4]Joan Jiménez‑Balado, Fabian Corlier, Christian Habeck, Yaakov Stern & Teal Eich1,“Effects of white matter hyperintensities distribution and clustering on late-life cognitive impairment,”ScientificReports(2022),doi.org/10.1038/s41598-022-06019-8. [5]Cassandra J. Anor, Mahsa Dadar, D. Louis Collins, and M. Carmela Tartaglia“The Longitudinal Assessment of Neuropsychiatric Symptoms in Mild Cognitive Impairment and Alzheimer’s Disease and Their Association With White Matter Hyperintensities in the National Alzheimer’s Coordinating Center’s Uniform Data Set,”Biological Psychiatry: Cognitive Neuroscience and Neuroimaging January 2021; 6:70–78 www.sobp.org/BPCNNI. [6]N. Hirono, H. Kitagaki, H. Kazui, M. Hashimoto, and E. Mori, “Impact of white matter changes on clinical manifestation of Alzheimer’s disease: A quantitative study,” Stroke, vol. 31, no. 9, pp. 2182–2188, Sep. 2000, doi: 10.1161/01.str.31.9.2182. [7]J. Ramirez et al., “Lesion Explorer: a comprehensive segmentation and parcellation package to obtain regional volumetrics for subcortical hyperintensities and intracranial tissue,” NeuroImage, vol. 54, no. 2, pp. 963–973, Jan. 2011, doi: 10.1016/j.neuroimage.2010.09.013. [8]J. M. Wardlaw et al., “Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration,” Lancet Neurol., vol. 12, no. 8, pp. 822–838, Aug. 2013, doi: 10.1016/S1474-4422(13)70124-8. [9]M. Leite, L. Rittner, S. Appenzeller, H. H. Ruocco, and R. Lotufo, “Etiology-based classification of brain white matter hyperintensity on magnetic resonance imaging,” J. Med. Imaging, vol. 2, no. 1, Jan. 2015, doi: 10.1117/1.JMI.2.1.014002. [10]L. C. Silbert, C. Nelson, D. B. Howieson, M. M. Moore, and J. A. Kaye, “Impact of white matter hyperintensity volume progression on rate of cognitive and motor decline,” Neurology, vol. 71, no. 2, pp. 108–113, Jul. 2008, doi: 10.1212/01.wnl.0000316799.86917.37. [11]M. Yoshita, E. Fletcher, and C. DeCarli, “Current Concepts of Analysis of Cerebral White Matter Hyperintensities on Magnetic Resonance Imaging,” Top. Magn. Reson. Imaging TMRI, vol. 16, no. 6, pp. 399–407, Dec. 2005, doi: 10.1097/01.rmr.0000245456.98029.a8. [12]S. M. Smith et al., “Accurate, robust, and automated longitudinal and cross-sectional brain change analysis,” NeuroImage, vol. 17, no. 1, pp. 479–489, Sep. 2002, doi: 10.1006/nimg.2002.1040. [13]E. Gibson, F. Gao, S. E. Black, and N. J. Lobaugh, “Automatic segmentation of white matter hyperintensities in the elderly using FLAIR images at 3T,” J. Magn. Reson. Imaging, vol. 31, no. 6, pp. 1311–1322, Jun. 2010, doi: 10.1002/jmri.22004. [14]A. Cerasaet al., “A Cellular Neural Network methodology for the automated segmentation of multiple sclerosis lesions,” J. Neurosci. Methods, vol. 203, no. 1, pp. 193–199, Jan. 2012, doi: 10.1016/j.jneumeth.2011.08.047. [15]R. Simõeset al., “Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images,” Magn. Reson. Imaging, vol. 31, no. 7, pp. 1182–1189, Sep. 2013, doi: 10.1016/j.mri.2012.12.004. [16]B. Xue, L. Wang, H.-C. Li, H. M. Chen, and C.-I. Chang, “Lesion detection in magnetic resonance brain images by hyperspectral imaging algorithms,” in Remotely Sensed Data Compression, Communications, and Processing XII, SPIE, Aug. 2016, pp. 106–117. doi: 10.1117/12.2223886. [17]Malo Gaubert, Andrea Dell, Catharina Lange, Antoine Garnier-Crussard, Isabella Zimmermann, Martin Dyrba, Marco Duering, Gabriel Ziegler, Oliver Peters, Lukas Preis, Josef Priller, Eike Jakob Spruth, Anja Schneider,“Performance evaluation of automated WMHs seg-algor in a multicenter cohort on cognitive impairment and dementia_2023,”TYPE Original Research,2023, DOI 10.3389/fpsyt.2022.1010273. [18]Soojin Lee, ZunHyanRieu, Regina EY Kim, Minho Lee,Kevin Yen, Junghyun Yong, DonghyeonKim“Automatic segmentation of WMHs in T2-FLAIR with AQUA_2023,”Brain Research Bulletin 205 (2023) 110825. [19]J.-W. Chai et al., “Robust volume assessment of brain tissues for 3-dimensional fourier transformation MRI via a novel multispectral technique,” PloS One, vol. 10, no. 2, p. e0115527, 2015, doi: 10.1371/journal.pone.0115527. [20]J.-W. Chai et al., “Quantitative analysis in clinical applications of brain MRI using independent component analysis coupled with support vector machine,” J. Magn. Reson. Imaging JMRI, vol. 32, no. 1, pp. 24–34, Jul. 2010, doi: 10.1002/jmri.22210. [21]A. H. Kashani, M. Wong, N. Koulisis, C.-I. Chang, G. Martin, and M. S. Humayun, “Hyperspectral imaging of retinal microvascular anatomy,” J. Biomed. Eng. Inform., vol. 2, no. 1, p. 139, Nov. 2015, doi: 10.5430/jbei.v2n1p139. [22]Y.-C. Ouyang et al., “Independent Component Analysis for Magnetic Resonance Image Analysis,” EURASIP J. Adv. Signal Process., vol. 2008, no. 1, pp. 1–14, Dec. 2008, doi: 10.1155/2008/780656. [23]L. P. Clarke et al., “MRI segmentation: Methods and applications,” Magn. Reson. Imaging, vol. 13, no. 3, pp. 343–368, Jan. 1995, doi: 10.1016/0730-725X(94)00124-L. [24]M. Vaidyanathan, L. P. Clarke, C. Heidtman, R. P. Velthuizen, and L. O. Hall, “Normal brain volume measurements using multispectral MRI segmentation,” Magn. Reson. Imaging, vol. 15, no. 1, pp. 87–97, 1997, doi: 10.1016/s0730-725x(96)00244-5. [25]A. H. Andersen, Z. Zhang, M. J. Avison, and D. M. Gash, “Automated segmentation of multispectral brain MR images,” J. Neurosci. Methods, vol. 122, no. 1, pp. 13–23, Dec. 2002, doi: 10.1016/s0165-0270(02)00273-x. [26]J. C. Harsanyi, “Detection and classification of subpixel spectral signatures in hyperspectral image sequences,” Ph.D. dissertation, Department of Electrical Engineering, University of Maryland, Baltimore County, United States, 1993. [27]J. C. Harsanyi and C.-I. Chang, “Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach,” IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779–785, Jul. 1994, doi: 10.1109/36.298007. [28]H. Ren and C.-I. Chang, “A generalized orthogonal subspace projection approach to unsupervised multispectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 6, pp. 2515–2528, Jan. 2000, doi: 10.1109/36.885199. [29]C.-I. Chang et al., “Generalized constrained energy minimization approach to subpixel target detection for multispectral imagery,” Opt. Eng., vol. 39, no. 5, pp. 1275–1281, May 2000, doi: 10.1117/1.602486. [30]Y.-C. Ouyang et al., “Band expansion-based over-complete independent component analysis for multispectral processing of magnetic resonance images,” IEEE Trans. Biomed. Eng., vol. 55, no. 6, pp. 1666–1677, Jun. 2008, doi: 10.1109/tbme.2008.919107. [31]C.-M. Wang et al., “Unsupervised orthogonal subspace projection approach to magnetic resonance image classification,” Opt. Eng., vol. 41, no. 7, pp. 1546–1557, Jul. 2002, doi: 10.1117/1.1479710. [32]C.-M. Wang et al., “Detection of spectral signatures in multispectral MR images for classification,” IEEE Trans. Med. Imaging, vol. 22, no. 1, pp. 50–61, Jan. 2003, doi: 10.1109/TMI.2002.806858. [33]C. C.-C. Chen et al., “Intra-pixel multispectral processing of magnetic resonance brain images for tissue characterisation,” Int. J. Comput. Sci. Eng., vol. 8, no. 2, pp. 87–110, Jan. 2013, doi: 10.1504/IJCSE.2013.053090. [34]G.-C. Lin, C.-M. Wang, W.-J. Wang, and S.-Y. Sun, “Automated classification of multispectral MR images using unsupervised constrained energy minimization based on fuzzy logic,” Magn. Reson. Imaging, vol. 28, no. 5, pp. 721–738, Jun. 2010, doi: 10.1016/j.mri.2010.03.009. [35]S.-W. Chan et al., “Breast Tumor Detection and Classification Using Intravoxel Incoherent Motion Hyperspectral Imaging Techniques,” BioMed Res. Int., vol. 2019, p. e3843295, Jul. 2019, doi: 10.1155/2019/3843295. [36]H.-M. Chen et al., “A Hyperspectral Imaging Approach to White Matter Hyperintensities Detection in Brain Magnetic Resonance Images,” Remote Sens., vol. 9, no. 11, p. 1174, Nov. 2017, doi: 10.3390/rs9111174. [37]C.-C. C. Chen et al., “An Iterative Mixed Pixel Classification for Brain Tissues and White Matter Hyperintensity in Magnetic Resonance Imaging,” IEEE Access, vol. 7, pp. 124674–124687, 2019, doi: 10.1109/ACCESS.2019.2931761. [38]C.-I. Chang, C.-C. C. CHEN, J. W. CHAI, and H.-M. CHEN, “Iterative analyzing method for a medical image,” US10621722B2, Apr. 14, 2020 Accessed: Mar. 13, 2024. [Online]. Available: https://patents.google.com/patent/US10621722B2/en [39]X. Jiao and C.-I. Chang, “Kernel-based constrained energy minimization (K-CEM),” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, SPIE, Apr. 2008, pp. 523–533. doi: 10.1117/12.782221. [40]K. Y. Ma and C.-I. Chang, “Kernel-Based Constrained Energy Minimization for Hyperspectral Mixed Pixel Classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–23, 2022, doi: 10.1109/TGRS.2021.3085801. [41]C.-I. Chang, “An Effective Evaluation Tool for Hyperspectral Target Detection: 3D Receiver Operating Characteristic Curve Analysis,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 6, pp. 5131–5153, Jun. 2021, doi: 10.1109/TGRS.2020.3021671. [42]C.-I. Chang, Hyperspectral Data Processing: Algorithm Design and Analysis. New York: John Wiley & Sons, Inc, 2013. [43] O.L. Frost III, "An algorithm for linearly constrained adaptive array processing," Proc. IEEE, vol. 60, pp. 926-935, 1972. [44] C. K. I. Williams and M. Seeger, “Using the Nyström method to speed up kernel machines,” in Proc. Neural Inf. Process. Syst. (NIPS), 2001, pp. 682–688. [45] B. Xue, C. Yu, Y. Wang, M. Song, S. Li, L. Wang, H.M. Chen and C.-I Chang, “A subpixel target approach to hyperpsectral image classification,” IEEE Trans. on Geoscience and Remote Sensing, vol. 55, no. 9, pp. 5093-5114, September 2017. [46]C.-I Chang, "Target signature-constrained mixed pixel classification for hyperspectral imagery," IEEE Trans. on Geoscience and Remote Sensing, vol. 40, no. 2, pp. 1065-1081, May 2002. [47] H. Ren and C.-I Chang, "Target-constrained interference-minimized approach to subpixel target detection for hyperspectral imagery," Optical Engineering, vol. 39, no. 12, pp. 3138-3145, December 2000. [48]Paul Schmidt. Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging. PhD thesis, Ludwig- Maximilians-Universität München, Januar 2017. URL http://nbn-resolving.de/urn:nbn:de:bvb:19-203731. [49]Paul Schmidt, Christian Gaser, Milan Arsic, Dorothea Buck, Annette Förschler, Achim Berthele, Muna Hoshi, RüdigerIlg, Volker J Schmid, Claus Zimmer, et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage, 59(4):3774–3783, 2012. [50]Paul Schmidt, Viola Pongratz, Pascal Küster, Dominik Meier, Jens Wuerfel, Carsten Lukas, Barbara Bellenberg, Frauke Zipp, Sergiu Groppa, Philipp G Sämann, et al. Automated segmentation of changes in flair-hyperintense white matter lesions inmultiple sclerosis on serial magnetic resonance imaging. NeuroImage: Clinical,23:101849, 2019.
|