|
[1] Karsten König, Andreas Ostendorf, “Optically Induced Nanostructures,” Berlin: De Gruyter, 2015, pp.27.
[2] S. Datta, S. Dutta, B. Grisafe, J. Smith, S. Srinivasa and H. Ye, “Back-End-of-Line Compatible Transistors for Monolithic 3-D Integration,” 2019 IEEE Micro, vol. 39, no. 6, pp. 8-15, doi: 10.1109/MM.2019.2942978.
[3] M.D. Bishop, H.-S. Philip Wong, S. Mitra and M. M. Shulaker, “Monolithic 3-D Integration,” 2019 IEEE Micro, vol. 39, no. 6, pp. 16-27, doi:10.1109/MM.2019.2942982.
[4] A. Marroun, N. A. Touhami and T. -E. El Hamadi, “Improved IGZO-TFT structure Using High-k Gate Dielectric Materials,” 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez, Morocco, pp. 1-4, doi: 10.1109/WITS.2019.8723852.
[5] Hyukjoon Yoo, I. Sak Lee, Sujin Jung, Sung Min Rho, Byung Ha Kang, and Hyun Jae Kim, “A Review of Phototransistors Using Metal Oxide Semiconductors: Research Progress and Future Directions,” 2021 Advanced Materials, vol. 33, issue. 47, pp. 2170372, doi: 10.1002/adma.202006091.
[6] Hongyan Xu, Mohammad Karbalaei Akbari, Surender Kumar, Francis Verpoort and Serge Zhuiykov, “Atomic layer deposition – state-of-the-art approach to nanoscale hetero-interfacial engineering of chemical sensors electrodes: A review,” 2021 Elsevier Sensors and Actuators B: Chemical, vol. 331, doi: 10.1016/j.snb.2020.129403.
[7] https://www.narlabs.org.tw/xcscience/
[8] Shweta Tomer, Jagannath Panigrahi, Prathap Pathi, Govind Gupta and Vandana, “Effect of ALD window on thermal ALD deposited HfOx/Si interface for silicon surface passivation,” 2021 Elsevier Sensors Materials Today: Proceedings, vol. 46, pp.5761-5765, doi : 10.1016/j.matpr.2021.02.711.
[9] Yung-Huang Chang, Chih Chen and Chih-Lung Peng, “The Principles and Applications of Atomic Layer Deposition,” 2007 科儀新知, vol. 29, no. 1, pp.33-43.
[10] https://www.ugent.be/en
[11] You Jin Jia, Ki Seok Kima, Ki Hyun Kima, Ji Young Byuna and Geun Young Yeoma, “A Brief Review of Plasma Enhanced Atomic Layer Deposition of Si3N4,” 2019 Applied Science and Convergence Technology (ASCT), vol. 28, no. 5, pp.142-147.
[12] Chi-Chung Kei, Wen-Hao Cho, Chien-Pao Lin, Bo-Heng Liu and Chien-Hung Chen, “ Industrial Applications and Development Prospect of Atomic Layer Deposition,” 2013 科儀新知, vol. 35, no. 2, pp.71-80.
[13] Moon-Kyun Song and Shi-woo Rhee, “ Phase Formation in the Tantalum Carbonitride Film Deposited with Atomic Layer Deposition Using Ammonia,” 2008 Journal of The Electrochemical Society, vol. 155, no. 10, pp.H823-H828, doi: 10.1149/1.2967333.
[14] Yuhang Guan et al., “ Ultra-thin top-gate insulator of atomic-layer-deposited HfOx for amorphous InGaZnO thin-film transistors,” 2023 Elsevier Sensors Applied Surface Science, vol. 625, doi: 10.1016/j.apsusc.2023.157177
[15] M. H. Rabbi, M. M. Billah, A. B. Siddik, S. Lee, J. Lee and J. Jang, “ Extremely Stable Dual Gate Coplanar Amorphous InGaZnO Thin Film Transistor With Split Active Layer by N2O Annealing,” 2020 IEEE Electron Device Letters, vol. 41, no. 12, pp. 1782-1785, doi: 10.1109/LED.2020.3034119.
[16] Ao Liu et al., “ Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage, high-performance transistors,” 2016 Journal of Materials Chemistry C, issue. 20, doi: 10.1039/C6TC00474A.
[17] Takio Kizu et al., “ Low-temperature processable amorphous In-W-O thin-film transistors with high mobility and stability,” 2014 APPLIED PHYSICS LETTERS, 104, 152103, doi: 10.1063/1.4871511.
[18] Y. Hu et al., “ On the Dopant, Defect States, and Mobility in W Doped Amorphous In2O3 for BEOL Transistors,” 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), pp. 1-3, doi: 10.1109/EDTM55494.2023.10103082. [19] Y. Hu et al., “ Theoretical and Empirical Insight into Dopant, Mobility and Defect States in W Doped Amorphous In2O3 for High-Performance Enhancement Mode BEOL Transistors,” 2022 International Electron Devices Meeting (IEDM), pp. 8.5.1-8.5.4, doi: 10.1109/IEDM45625.2022.10019366.
[20] H. J. Kim, B. G. Son, C. -K. Lee, S. Y. Je, J. Y. Won and J. K. Jeong, “ Effect of Nitrous Oxide High Pressure Annealing on the Performance of Low Temperature, Soluble-Based IZO Transistors,” 2014 IEEE Electron Device Letters, vol. 35, no. 4, pp. 455-457, doi: 10.1109/LED.2014.2302841.
[21] Wai Shing Lau, Peng Wei Qian, Nathan P. Sandler, Kevin A. McKinley and Paul K. Chu, “ Evidence that N2O is a Stronger Oxidizing Agent than O2 for the Post-Deposition Annealing of Ta2O5 on Si Capacitors,” 1997 Japanese Journal of Applied Physics, vol. 36, no. 2, pp. 661-666, doi: 10.1143/JJAP.36.661.
[22] Seok-Jun Won, Ju-Youn Kim, Gyu-Jin Choi, Jaeyeong Heo, Cheol Seong Hwang, and Hyeong Joon Kim, “ The Formation of an Almost Full Atomic Monolayer via Surface Modification by N2O-Plasma in Atomic Layer Deposition of ZrO2 Thin Films,” 2009 American Chemical Society, pp. 4374-4379, doi: 10.1021/cm9005234.
[23] P.T Liu, C.H Chang, C.S Fuh, Y.T Liao and S.M Sze, “ Effects of Nitrogen on Amorphous Nitrogenated InGaZnO (a-IGZO:N) Thin Film Transistors,” 2016 Journal of Display Technology, vol. 12, no. 10, pp. 1070-1077, doi: 10.1109/JDT.2016.2585186.
[24] https://chem.libretexts.org/
[25] S. Takagi, A. Toriumi, M. Iwase and H. Tango, “ On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration,” 1994 IEEE Transactions on Electron Devices, vol. 41, no. 12, pp. 2357-2362, doi: 10.1109/16.337449.
[26] Y.C. Eng et al., “ Importance of ΔVDIBLSS/(Ion/Ioff) in Evaluating the Performance of n-Channel Bulk FinFET Devices,” 2018 IEEE Journal of the Electron Devices Society, vol. 6, pp. 207-213, doi: 10.1109/JEDS.2018.2789922.
[27] C.H. Ahn et al., “ Electrostatic modification of novel materials,” 2006 REVIEWS OF MODERN PHYSICS, vol. 78, no. 4, pp. 1185-1212.
[28] Ao Liu et al., “Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage, high-performance transistors,” 2016 J. Mater. Chem. C, vol. 4, pp. 4478-4484, doi: 10.1039/c6tc00474a.
[29] Mingyue Qu et al., “Stability study of indium tungsten oxide thin-film transistors annealed under various ambient conditions,” 2016 Phys. Status Solidi A, vol. 214, no. 2, pp. 1600465, doi: 10.1002/pssa.201600465.
[30] Jiawei He et al., “Defect Self-Compensation for High-Mobility Bilayer InGaZnO/In2O3 Thin-Film Transistor,” 2019 Adv. Electron. Mater., vol. 5, no.6, pp. 1900125, doi: 10.1002/aelm.201900125.
[31] A. Chasin et al., “Understanding and modelling the PBTI reliability of thin-film IGZO transistors," 2021 IEEE International Electron Devices Meeting (IEDM), pp. 31.1.1-31.1.4, doi: 10.1109/IEDM19574.2021.9720666.
[32] B. deB. Darwent, “Bond Dissociation Energies in Simple Molecules,” NSRDS, Washington, U.S., 1970.
[33] L. Zhu et al., “High-Performance Amorphous InGaZnO Thin-Film Transistor Gated by HfAlOₓ Dielectric With Ultralow Subthreshold Swing,” 2021 IEEE Trans. Electron Devices, vol. 68, no. 12, pp. 6154-6158, doi: 10.1109/TED.2021.3117492.
[34] B. deB. Darwent, “Bond Dissociation Energies in Simple Molecules,” NSRDS, Washington, U.S., 1970.
[35] Mahboobeh Abbaspoor , Maryam Aliannezhadi, Fatemeh Shariatmadar Tehrani, “ Effect of solution pH on as-synthesized and calcined WO3 nanoparticles synthesized using sol-gel method,” 2021 Elsevier Sensors Optical Materials, vol. 121, doi: 10.1016/j.optmat.2021.111552.
[36] Khairiah Binti Haji Badri et al., “ FTIR SPECTROSCOPY ANALYSIS OF THE PREPOLYMERIZATION OF PALM-BASED POLYURETHANE,” 2010 Solid State Science and Technology, vol. 18, no. 2, pp. 1-8
[37] Weifeng Peng et al., “Renewable protein-based monomer for thermosets: a case study on phthalonitrile resin,” 2018 The Royal Society of Chemistry, pp. 5158-5168 doi: 10.1039/c8gc01824c.
[38] M. A. Ouadfel et al., “SIMS and auger investigation of thin a-SiC and a-SiC:H films by Up-Down sputtering DC magnetron, impact on optical properties,” 2014 North African Workshop on Dielectic Materials for Photovoltaic Systems (NAWDMPV), pp. 1-4, doi: 10.1109/NAWDMPV.2014.6997619.
|