跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 14:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳滺瑞
研究生(外文):CHEN,YOU-RUEI
論文名稱:摻雜銀之層狀中孔高熵氧化物光觸媒及其於光催化還原CO2之應用
論文名稱(外文):Silver-doped mesoporous high-entropy oxide sheets as photocatalyst for CO2 photoreduction aplication
指導教授:駱安亞
指導教授(外文):LO,AN-YA
口試委員:張育誠鄧伊茹
口試委員(外文):CHANG, YU-CHENGTENG,I-JU
口試日期:2023-12-29
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:中文
論文頁數:100
中文關鍵詞:高熵氧化物光催化劑中孔材料光催化CO2還原
外文關鍵詞:High-entropy oxides(HEOs)PhotocatalystsMesoporous materialPhotocatalytic CO2 conversion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年因工業發展造成嚴重環境汙染以及氣候變遷,其中化石燃油的使用,使二氧化碳等溫室氣體(CO2、CH4、N2O、O3)的排放也隨之增加,而光催化還原CO2,可以有效將CO2轉化為具有經濟價值之化學品(例如CO、CH4),因此催化反應中所需的光觸媒成為近年受關注的研究領域之一。其中二維材料作為光催化劑受到關注,其具有大比表面積使其提供足夠CO2還原反應位點,而厚度縮短了載流子從內部到表面的遷移距離及暴露於材料表面的不飽和配位原子可以作為活性中心。本研究通過水熱法製備高熵氧化物,探討在不同滴定時機(後滴定、預滴定)與pH值、鍛燒溫度、摻雜不同銀含量,藉由SEM、TEM圖像、XRD圖譜和BET觀察其形貌及孔結構,並透過UV-DRS、PL等儀器鑑定其材料性質。最終透過GC-TCD以固-氣光催化反應,將CO2還原成甲烷及一氧化碳,並與商用光觸媒P25比較,由實驗結果比較得知,光觸媒銀添加量10wt%時,其甲烷及一氧化碳產率最佳,其甲烷及一氧化碳產量表現優於P25,分別為5.28倍及1.51倍。表明本研究摻雜銀之層狀中孔高熵氧化物,在光催化還原CO2中,銀添加有助於甲烷及一氧化碳產率提升。
In recent years, severe environmental pollution and climate change have been attributed to industrial development, with the use of fossil fuels leading to increased emissions of greenhouse gases such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3). Photocatalytic reduction of CO2 has emerged as a promising approach to effectively transform CO2 into economically valuable chemicals like CO and CH4. Therefore, the investigation of photocatalysts, particularly two-dimensional materials, has garnered significant attention due to their large surface area, providing sufficient sites for CO2 reduction reactions. The reduced thickness of these materials shortens the migration distance of charge carriers from the interior to the surface, and unsaturated coordination atoms exposed on the material's surface can serve as active centers.In this study, high-entropy oxides were synthesized through a hydrothermal method, and the effects of different titration timings (post-titration, pre-titration), pH values, calcination temperatures, and various silver doping levels were investigated. The morphology and pore structure were observed using SEM, TEM images, XRD patterns, and BET analysis. Material properties were identified through instruments such as UV-DRS and PL.Ultimately, in the solid-gas photocatalytic reaction using GC-TCD, CO2 was reduced to methane and carbon monoxide. A comparison with the commercial photocatalyst P25 revealed that the addition of 10wt% silver to the photocatalyst resulted in the optimal methane and carbon monoxide yields. The methane and carbon monoxide production rates were 5.28 times and 1.51 times higher, respectively, than those of P25. This indicates that the silver-doped layered mesoporous high-entropy oxide in this study enhances the methane and carbon monoxide production rates in the photocatalytic reduction of CO2.
摘要I
AbstractII
致謝IV
目錄V
圖目錄VII
表目錄X
第1章 緒論1
第2章 文獻回顧2
2-1、 光催化反應機制2
2-2、 二維奈米材料光催化劑8
2-3、 層狀MCM-50及LDH應用18
2-4、 高熵材料背景及發展24
2-5、 共觸媒修飾31
第3章 研究方法34
3-1、 實驗藥品34
3-2、 實驗步驟35
3-3、 材料鑑定設備39
3-4、 光催化還原實驗設計46
第4章 結果與討論 51
4-1、 滴定時機(預滴定、後滴定)及pH值對層狀中孔光觸媒結構影響 51
4-2、 鍛燒溫度對層狀中孔光觸媒結構影響68
4-3、 摻雜銀對層狀中孔觸媒之催化效能影響79
第5章 結論與建議85
第6章 補充資料87
第7章 參考文獻93

1.Manisalidis, I., et al., Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 2020. 8.
2.Godin, J., et al., Advances in recovery and utilization of carbon dioxide: A brief review. Journal of Environmental Chemical Engineering, 2021. 9(4).
3.Zeng, J., et al., Solution plasma-assisted preparation of highly dispersed NiMnAl-LDO catalyst to enhance low-temperature activity of CO2 methanation. International Journal of Hydrogen Energy, 2022. 47(4): p. 2234-2244.
4.Zhang, Z., et al., Research progress of Metal–Organic Frameworks (MOFs) for CO2 Conversion in CCUS. Journal of the Energy Institute, 2023.
5.Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37-38.
6.Shen, Z., et al., Adsorption-enhanced nitrogen-doped mesoporous CeO2 as an efficient visible-light-driven catalyst for CO2 photoreduction. Journal of CO2 Utilization, 2020. 39: p. 101176.
7.Gao, C., et al., Improving photocatalytic hydrogen production via ultrafine-grained precipitates formed nearby surface defects of NiFe-LDH nanosheets. Chemical Engineering Journal, 2022. 446.
8.Qamar, S., et al., Ultrathin TiO2 flakes optimizing solar light driven CO2 reduction. Nano Energy, 2016. 26: p. 692-698.
9.Lu, J., et al., Photocatalytic reduction of CO2 by two-dimensional Zn-MOF-NH2/Cu heterojunctions. Catalysis Communications, 2023. 175.
10.Gogoi, D., et al., Exfoliated gC3N4 supported CdS nanorods as a S-scheme heterojunction photocatalyst for the degradation of various textile dyes. Advanced Powder Technology, 2022. 33(11).
11.Liu, Y., et al., Fabrication of 2H/3C-SiC heterophase junction nanocages for enhancing photocatalytic CO(2) reduction. J Colloid Interface Sci, 2022. 622: p. 31-39.
12.Kumari, P., et al., A Comprehensive Review: Recent Progress on Magnetic High Entropy Alloys and Oxides. Journal of Magnetism and Magnetic Materials, 2022. 554: p. 169142.
13.White, J.L., et al., Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews, 2015. 115(23): p. 12888-12935.
14.Khalil, M., et al., Photocatalytic conversion of CO2 using earth-abundant catalysts: A review on mechanism and catalytic performance. Renewable and Sustainable Energy Reviews, 2019. 113: p. 109246.
15.Swedha, M., et al., Continuous photocatalysis via Z-scheme based nanocatalyst system for environmental remediation of pharmaceutically active compound: Modification, reaction site, defect engineering and challenges on the nanocatalyst. Journal of Molecular Liquids, 2022. 353: p. 118745.
16.Xu, Y. and M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. 2000. 85(3-4): p. 543-556.
17.Tang, W., et al., Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. Journal of Hazardous Materials, 2011. 192(1): p. 131-138.
18.Bi, D. and Y. Xu, Synergism between Fe2O3 and WO3 particles: Photocatalytic activity enhancement and reaction mechanism. Journal of Molecular Catalysis A: Chemical, 2013. 367: p. 103-107.
19.Akhlaghi, N., G. Najafpour-Darzi, and H. Younesi, Facile and green synthesis of cobalt oxide nanoparticles using ethanolic extract of Trigonella foenumgraceum (Fenugreek) leaves. Advanced Powder Technology, 2020. 31(8): p. 3562-3569.
20.Dey, S. and G.C. Dhal, The catalytic activity of cobalt nanoparticles for low-temperature oxidation of carbon monoxide. Materials Today Chemistry, 2019. 14.
21.Divya Madhuri, U. and T.P. Radhakrishnan, Insulating Polymer-Hydrogel Nanocomposite Thin Film - Based Catalytic Electrode for Efficient Oxygen Evolution Reaction. ChemElectroChem, 2019. 6(7): p. 1984-1989.
22.Thoniyot, P., et al., Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Advanced Science, 2015. 2(1-2).
23.Galhardo, T.S., et al., Optimizing Active Sites for High CO Selectivity during CO2 Hydrogenation over Supported Nickel Catalysts. Journal of the American Chemical Society, 2021. 143(11): p. 4268-4280.
24.Qi, K., et al., Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceramics International, 2020. 46(2): p. 1494-1502.
25.Wahba, M.A., et al., Remarkable photocatalytic activity of Zr doped ZnO and ZrO2/ZnO nanocomposites: Structural, morphological and photoluminescence properties. Materials Chemistry and Physics, 2020. 256: p. 123754.
26.Wu, J., et al., Research advances in the light-driven conversion of CO2 to valuable chemicals by two-dimensional nanomaterials. Materials Today Energy, 2022. 28: p. 101065.
27.Yang, X., et al., Rational design of MoS2@COF hybrid composites promoting C-C coupling for photocatalytic CO2 reduction to ethane. Applied Catalysis B: Environmental, 2023. 325.
28.Wu, Z., et al., Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO(2) Photocatalysis. ACS Nano, 2021. 15(3): p. 5696-5705.
29.Chamoli, P., et al., Microwave-assisted rapid synthesis of honeycomb core-ZnO tetrapods nanocomposites for excellent photocatalytic activity against different organic dyes. Applied Surface Science, 2021. 555.
30.Wang, K., et al., Efficient and selective oxidation of cyclohexane to cyclohexanone over flake hexagonal boron nitride/titanium dioxide hybrid photocatalysts. Molecular Catalysis, 2021. 505.
31.Liu, J., et al., High-yield aqueous synthesis of partial-oxidized black phosphorus as layered nanodot photocatalysts for efficient visible-light driven degradation of emerging organic contaminants. Journal of Cleaner Production, 2022. 377.
32.Wang, T., et al., Stability and synthesis of 2D metals and alloys: a review. Materials Today Advances, 2020. 8: p. 100092.
33.Huang, Y., et al., High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale, 2014. 6(12): p. 6496-6500.
34.Kim, M.H., D.K. Yoon, and S.H. Im, Growth pathways of silver nanoplates in kinetically controlled synthesis: bimodal versus unimodal growth. RSC Advances, 2015. 5(19): p. 14266-14272.
35.Hussain, N., et al., Ultrathin Bi Nanosheets with Superior Photoluminescence. Small, 2017. 13(36): p. 1701349.
36.Sricharan, M., et al., Exfoliation in a low boiling point solvent and electrochemical applications of MoO3. Beilstein Journal of Nanotechnology, 2020. 11: p. 662-670.
37.Lin, H.-P. and C.-Y. Mou, Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica. Accounts of Chemical Research, 2002. 35(11): p. 927-935.
38.Che, S., et al., Synthesis Mechanism of Cationic Surfactant Templating Mesoporous Silica under an Acidic Synthesis Process. Chemistry of Materials, 2005. 17(16): p. 4103-4113.
39.Schwanke, A.J., R. Balzer, and S. Pergher, Microporous and Mesoporous Materials from Natural and Inexpensive Sources, in Handbook of Ecomaterials. 2019. p. 3379-3399.
40.Vartuli, J.C., et al., Chapter 1 - Designed Synthesis of Mesoporous Molecular Sieve Systems Using Surfactant-Directing Agents, in Advanced Catalysts and Nanostructured Materials, W.R. Moser, Editor. 1996, Academic Press: San Diego. p. 1-19.
41.Zhang, J., Z. Luz, and D. Goldfarb, EPR Studies of the Formation Mechanism of the Mesoporous Materials MCM-41 and MCM-50. The Journal of Physical Chemistry B, 1997. 101(36): p. 7087-7094.
42.Jimenez, M.V., et al., Evaluation of new surfactant expanded zirconium and titanium phosphates for polycyclic aromatic hydrocarbons extraction from waters. Chemosphere, 2004. 57(3): p. 179-86.
43.Saputra, H., et al., Gel-like properties of MCM-41 material and its transformation to MCM-50 in a caustic alkaline surround. Materials Research Bulletin, 2012. 47(3): p. 732-736.
44.Chastek, T.T., et al., Synthesis of lamellar isobutyl silicates and dispersion in polypropylene melts. Journal of Applied Polymer Science, 2007. 105(3): p. 1456-1465.
45.Polese, D., et al., A phenomenological investigation on Chlorine intercalated Layered Double Hydroxides used as room temperature gas sensors. Journal of Alloys and Compounds, 2017. 692: p. 915-922.
46.Zakaria, S.A., S.H. Ahmadi, and M.H. Amini, Chemiresistive gas sensors based on layered double hydroxides (LDHs) structures: A review. Sensors and Actuators A: Physical, 2022. 346.
47.Morandi, S., et al., Synthesis and characterisation of gas sensor materials obtained from Pt/Zn/Al layered double hydroxides. Sensors and Actuators B: Chemical, 2006. 118(1-2): p. 215-220.
48.Johnston, A.-L., et al., Understanding Layered Double Hydroxide properties as sorbent materials for removing organic pollutants from environmental waters. Journal of Environmental Chemical Engineering, 2021. 9(4).
49.Mohapatra, L. and K. Parida, A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. Journal of Materials Chemistry A, 2016. 4(28): p. 10744-10766.
50.Morel-Desrosiers, N., et al., Intercalation of dicarboxylate anions into a Zn–Al–Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange. J. Mater. Chem., 2003. 13(10): p. 2582-2585.
51.Erickson, K.L., T.E. Bostrom, and R.L. Frost, A study of structural memory effects in synthetic hydrotalcites using environmental SEM. Materials Letters, 2005. 59(2-3): p. 226-229.
52.Rives, V., M. del Arco, and C. Martín, Intercalation of drugs in layered double hydroxides and their controlled release: A review. Applied Clay Science, 2014. 88-89: p. 239-269.
53.Evans, D.G. and R.C.T. Slade, Structural Aspects of Layered Double Hydroxides, in Layered Double Hydroxides, X. Duan and D.G. Evans, Editors. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-87.
54.Dias, Y.R. and O.W. Perez-Lopez, CO2 methanation over Ni-Al LDH-derived catalyst with variable Ni/Al ratio. Journal of CO2 Utilization, 2023. 68: p. 102381.
55.Zhang, T., et al., Ultrathin NiZrAl layered double hydroxide nanosheets derived catalyst for enhanced CO2 methanation. International Journal of Hydrogen Energy, 2023. 48(15): p. 5940-5952.
56.Yeh, J.-W., et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
57.Syed Ghazi, S. and K.R. Ravi, Phase-evolution in high entropy alloys: Role of synthesis route. Intermetallics, 2016. 73: p. 40-42.
58.Pandian, V. and S. Kannan, Effect of high entropy particle on aerospace-grade aluminium composite developed through combined mechanical supersonic vibration and squeeze infiltration technique. Journal of Manufacturing Processes, 2022. 74: p. 383-399.
59.Popescu, G., et al. New TiZrNbTaFe high entropy alloy used for medical applications. in IOP Conference Series: Materials Science and Engineering. 2018.
60.Kumar Katiyar, N., et al., A perspective on the catalysis using the high entropy alloys. Nano Energy, 2021. 88: p. 106261.
61.Li, K. and W. Chen, Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects. Materials Today Energy, 2021. 20: p. 100638.
62.Rost, C.M., et al., Entropy-stabilized oxides. Nat Commun, 2015. 6: p. 8485.
63.Rashidy Ahmady, A., et al., High entropy alloy coatings for biomedical applications: A review. Smart Materials in Manufacturing, 2023. 1: p. 100009.
64.Haruna, A.B., E.U. Onoh, and K.I. Ozoemena, Emerging high-entropy materials as electrocatalysts for rechargeable zinc–air batteries. Current Opinion in Electrochemistry, 2023. 39: p. 101264.
65.You, J., et al., Research of high entropy alloys as electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2022. 908: p. 164669.
66.Huang, X., et al., Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis. Journal of Energy Chemistry, 2022. 68: p. 721-751.
67.Gao, Y., et al., High-entropy oxides for catalysis: Status and perspectives. Applied Catalysis A: General, 2022. 631: p. 118478.
68.Albedwawi, S.H., et al., High entropy oxides-exploring a paradigm of promising catalysts: A review. Materials & Design, 2021. 202: p. 109534.
69.Jiang, Z., et al., Preparation of (Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 high-entropy oxide with narrow bandgap for photocatalytic CO2 reduction with water vapor. Applied Surface Science, 2023. 612: p. 155809.
70.Ma, J. and C. Huang, High entropy energy storage materials: Synthesis and application. Journal of Energy Storage, 2023. 66: p. 107419.
71.Tsai, M.-H. and J.-W. Yeh, High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2(3): p. 107-123.
72.Tsai, K.Y., M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897.
73.Yan, X. and Y. Zhang, Functional properties and promising applications of high entropy alloys. Scripta Materialia, 2020. 187: p. 188-193.
74.Ranganathan, S., Alloyed pleasures: Multimetallic cocktails. Current Science, 2003. 85(10): p. 1404-1406.
75.Du, M., et al., Preparation and effect of grain size on the thermal stability, phase transition, mechanical property, and photocatalytic property of pyrochlore (La0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 high-entropy oxide. Ceramics International, 2022. 48(14): p. 20667-20674.
76.Xiao, B., et al., High entropy oxides (FeNiCrMnX)3O4 (X=Zn, Mg) as anode materials for lithium ion batteries. Ceramics International, 2021. 47(24): p. 33972-33977.
77.Mao, A., et al., A novel six-component spinel-structure high-entropy oxide with ferrimagnetic property. Journal of Magnetism and Magnetic Materials, 2020. 503: p. 166594.
78.Guo, D., et al., High-entropy (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 thermal barrier coating material with significantly enhanced fracture toughness. Chinese Journal of Aeronautics, 2023. 36(4): p. 556-564.
79.Yadav, A.A., et al., Hydrothermally Synthesized Ag@MoS2 Composite for Enhanced Photocatalytic Hydrogen Production. Catalysts, 2023. 13(4).
80.Cao, B., G. Li, and H. Li, Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation. Applied Catalysis B: Environmental, 2016. 194: p. 42-49.
81.Zeng, K., et al., Surface-Decorated High-Entropy Alloy Catalysts with Significantly Boosted Activity and Stability. Advanced Functional Materials, 2022. 32(33): p. 2204643.
82.Tasbihi, M., et al., Photocatalytic reduction of CO2 to hydrocarbons by using photodeposited Pt nanoparticles on carbon-doped titania. Catalysis Today, 2019. 328: p. 8-14.
83.Tan, B., et al., Promotion of photocatalytic steam reforming of methane over Ag0/Ag+-SrTiO3. Chinese Chemical Letters, 2020. 31(6): p. 1530-1534.
84.Bhardwaj, S. and B. Pal, Photodeposition of Ag and Cu binary co-catalyst onto TiO2 for improved optical and photocatalytic degradation properties. Advanced Powder Technology, 2018. 29(9): p. 2119-2128.
85.Alothman, Z., A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 2012. 5(12): p. 2874-2902.
86.He, Q. and Y. Yang, On Lattice Distortion in High Entropy Alloys. Frontiers in Materials, 2018. 5.
87.Thommes, M. and K.A. Cychosz, Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption, 2014. 20(2-3): p. 233-250.
88.Tauc, J., Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 1968. 3(1): p. 37-46.
89.Akrami, S., et al., Defective high-entropy oxide photocatalyst with high activity for CO2 conversion. Applied Catalysis B: Environmental, 2022. 303: p. 120896.
90.Roeffaers, M., et al., Single-molecule fluorescence spectroscopy in (bio)catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104: p. 12603-9.
91.Liudziute, M., et al., Impact of Polyamide Surface Preparation on the Formation of Mixed CdS-CdTe Layers. Crystals, 2023. 13(5): p. 730.
92.Shamim, S., et al., Morphology and visible photoluminescence modulation in dye-free mesoporous silica nanoparticles using a simple calcination step. Materials Research Bulletin, 2022. 152: p. 111842.
93.Chen, Q., et al., Effect of Grain Size on Phase Transformation and Photoluminescence Property of the Nanocrystalline ZrO2 Powders Prepared by Sol–Gel Method. Journal of Materials Science & Technology, 2014. 30(11): p. 1103-1107.
94.Ma, H.P., et al., Systematic Study of the SiO(x) Film with Different Stoichiometry by Plasma-Enhanced Atomic Layer Deposition and Its Application in SiO(x)/SiO(2) Super-Lattice. Nanomaterials (Basel), 2019. 9(1).
95.Mills, P. and J. Sullivan, A study of the core level electrons in iron and its 3 oxides by means of X-ray photoelectron-spectroscopy. Journal of Physics D: Applied Physics, 2000. 16: p. 723.
96.Song, L., et al., MXene quantum dot rivet reinforced Ni–Co LDH for boosting electrochemical activity and cycling stability. Materials Advances, 2021. 2(17): p. 5622-5628.
97.Jing, L., et al., The surface properties and photocatalytic activities of ZnO ultrafine particles. Applied Surface Science, 2001. 180(3): p. 308-314.
98.Xia, C., et al., Effect of Co content on the microstructure, mechanical properties and corrosion behavior of Zr alloys. Materials Characterization, 2023. 203: p. 113067.
99.Kiran, J.U., J.P. Roners, and S. Mathew, XPS and thermal studies of silver doped SiO2 matrices for plasmonic applications. Materials Today: Proceedings, 2020. 33: p. 1263-1267.


電子全文 電子全文(網際網路公開日期:20290129)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top