跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭予萱
研究生(外文):CHENG, YU-HSUAN
論文名稱:利用混合物實驗法製備應用於鋰離子電池之 PVDF/PAN/TPU 及 PVDF/PAN/PS 膠態高分子電解質
論文名稱(外文):Using experiments with mixtures method to prepare PVDF/PAN/TPU and PVDF/PAN/PS gel polymer electrolytes for lithium-ion batteries
指導教授:杜景順
指導教授(外文):DO ,JING-SHUN
口試委員:杜景順王詩涵蔡明瞭孫殿元駱永建
口試委員(外文):DO ,JING-SHUNWANG, SHI-HANTSAI, MING-LIAOSUN, DIAM-YUANGLO, YUNG-CHIEN
口試日期:2024-07-02
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:384
中文關鍵詞:三成分膠態高分子電解質離子電導率分解電壓機械強度混合物實驗法無陽極鋰半電池
外文關鍵詞:ternary gel polymer electrolyteionic conductivitydecompose voltagemechanical strengthmixture design methodanode-free lithium half-cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究論文將以 PVDF/PAN/TPU 與 PVDF/PAN/PS 三成分組成,利用靜電紡絲法 (Electrospinning) 製備膠態高分子電解質 (Gel polymer electrolyte, GPE)。利用傳統實驗法製備三成分膠態高分子電解質並且探討其吸液率、離子電導率 (Ionic conductivity, σ) 、分解電壓與機械性質,再利用混合物實驗法配合 SAS 統計分析探討 PVDF/PAN/TPU 與 PVDF/PAN/PS 系統的最佳組成;並將其組成無陽極半電池,探討其充放電性質。
  在傳統實驗法中,找出三成分各自的上限值後,改變 PVDF/PAN/TPU 與 PVDF/PAN/PS 的組成比例,製備膠態高分子電解質,利用交流阻抗 (AC impedance) 分析量測離子電導率。結果發現 PVDF/PAN/TPU 與 PVDF/PAN/PS 組成皆為 0.2 / 0.6 / 0.2 時,,具有最佳的離子電導率,分別為 3.52 × 10-3 與 3.89 × 10-3 S cm-1。
  利用具成分上限之混合物實驗設計法,配合統計分析,探討分別以離子電導率、分解電壓與機械應力為回應值之最佳組成,實驗結果發現 PVDF/PAN/TPU 膠態高分子電解質,以離子電導率為回應值與擬成分間之關係式為 y = 3.010 u1 + 3.000 u2 + 3.712 u3 + 4.481 u1u2 – 4.181 u1u3 + 45.51 u1u2u3,其中 u1、u2 與 u3 各為 PVDF、PAN 與 TPU 之擬組成。而 PVDF/PAN/PS 膠態高分子電解質,以離子電導率為回應值與擬成分間之關係式為 y = 2.478 u1 + 3.977 u2 + 3.284 u3 + 3.368 u1u2 – 5.137 u2u3 – 26.40 u1u2u3 ,其中 u1、u2 與 u3 各為 PVDF、PAN 與 PS 之擬組成。在 PVDF/PAN/TPU 膠態高分子電解質中,具最佳離子電導率為 4.94 × 10-3 S cm-1 之組成為 0.232 / 0.621 / 0.147;而以混合物實驗法製備的最佳 PVDF/PAN/PS 膠態高分子電解質中,具最佳離子電導率為 4.07 × 10-3 S cm-1 之組成為 0.245 / 0.555 / 0.200。
  以最佳組成的 PVDF/PAN/TPU 與 PVDF/PAN/PS 膠態高分子電解質,組裝為 Cu foil / PVDF/PAN/TPU(膜厚 = 0.300 mm) / Li 與 Cu foil / PVDF/PAN/PS (膜厚 = 0.300 mm) / Li 電池的最佳庫侖效率皆為 95.63 %,持續充放電至第 50 圈時之庫侖效率則分別為 84.51 與 83.10 %,而充放電循環壽命分別為 259 與 161 圈。將銅箔更換為泡沫銅後,兩半電池的最佳庫侖效率分別為 94.58 與 95.49 %,在第 50 圈時之庫侖效率則分別為 87.74 與 86.77%,而充放電循環壽命分別為 283 與 183 圈。
  The PVDF/PAN/TPU and PVDF/PAN/PS ternary gel polymer electrolytes (GPE) are prepared in this research by the electrospinning technique. The liquid electrolyte adsorption rate, ionic conductivity, decomposed voltage and mechanical properties of three components GPEs prepared by the traditional experiment method are analyzed. The optimal compositions of PVDF/PAN/TPU and PVDF/PAN/PS gel polymer electrolytes are obtained by the mixture design accompanied with Statistical Analysis Software (SAS). Using GPEs prepared in this work as the electrolyte, the charge/discharge properties of anode-free lithium half-cell are also investigated.
  The upper limits of components in ternary GPEs including PVDF/PAN/TPU and PVDF/PAN/PS are obtained by the conventional experiment technique, and the ionic conductivities measured by the AC impedance. The maximum ionic conductivity of the PVDF/PAN/TPU and PVDF/PAN/PS GPEs prepared by the conventional experiment technique are found to be 3.52×10-3 and 3.89×10-3 S cm-1, respectively, with composition of 0.2/0.6/0.2.
  Using the mixture design method with the upper limit of ingredients and statistical analysis, the optimal compositions are studied with the ionic conductivity, decomposed voltage and mechanical stress as responses, respectively. The experimental results show that the relationship between the ionic conductivity (as response y) of PVDF/PAN/TPU ternary GPE and the pseudo-compositions is

  y = 3.010 u1 + 3.000 u2 + 3.712 u3 + 4.481 u1u2 – 4.181 u1u3 + 45.51 u1u2u3

where u1、u2 and u3 are the pseudo-compositions of PVDF, PAN and TPU. For the PVDF/PAN/PS ternary GPE, the relationship between the ionic conductivity (as response y) and the pseudo-compositions u1, u2 and u3 corresponding to PVDF, PAN and PS is

  y = 2.478 u1 + 3.977 u2 + 3.284 u3 + 3.368 u1u2 – 5.137 u2u3 – 26.40 u1u2u3

For PVDF/PAN/TPU and PVDF/PAN/PS ternary GPEs, the compositions for maximum ionic conductivities of 4.94 × 10-3 and 4.07 × 10-3 S cm-1 are obtained to be 0.232/0.621/0.147 and 0.245/0.555/0.200, respectively.
  Using the optimal compositions of PVDF/PAN/TPU and PVDF/PAN/PS as GPEs, the maximum coulomb efficiencies of both Cu foil/PVDF/PAN/TPU (0.300 mm)/Li and Cu foil/PVDF/PAN/PS (0.300 mm)/Li batteries are 95.63 %, and the coulomb efficiencies slightly decrease to 84.51 and 83.10 % for 50th charge/discharge cycle, the charge/discharge cycle lifes are 259 and 161 cycles, respectively. Replacing Cu foil by Cu foam, the maximum coulomb efficiencies of the two batteries are found to be 94.58 and 95.49 %, and the coulomb efficiencies at 50th charge/discharge cycle are 87.74 and 86.77 %, respectively, and the charge/discharge cycle lifes are 283 and 183 cycles, respectively.
摘要 i
Abstract iii
目錄 v
表目錄 xiv
圖目錄 xviii
第一章 緒論 1
1-1前言 1
1-2鋰離子電池簡介 2
1-2-1鋰離子電池產業發展現況 4
1-2-2鋰離子電池之工作原理 5
1-3鋰離子電池之電解質 7
1-3-1液態電解質 (Liquid electrolyte, L.E. ) 9
1-3-2固態電解質 (Solid-state electrolyte, SSE) 10
1-3-3膠態電解質 (Gel polymer electrolyte, GPE) 11
1-3-3-1 膠態電解質之製備方法 12
1-3-3-2 製備膠態高分子電解質之高分子材料 26
1-3-3-3 製備膠態高分子電解質之複合高分子材料 33
1-3-3-4 製備膠態高分子電解質中的無機填料 38
1-4研究動機及實驗架構 44
第二章 原理 46
2-1 實驗設計法 46
2-2 混合物實驗法原理 47
2-2-1 混合物實驗法之原理 47
2-2-2 混合物實驗法之擬組成法 48
2-2-2 A. 組成存在下限條件之情形 48
2-2-2 B. 組成存在上限條件之情形 51
第三章 實驗程序與設備 54
3-1 本研究所使用之實驗藥品及儀器 54
3-1-1 實驗藥品 54
3-1-2 實驗儀器 56
3-2 實驗程序 58
3-2-1 膠態高分子電解質薄膜的製備 58
3-2-1-1 PVDF 膠態高分子電解質薄膜 58
3-2-1-2 PAN 膠態高分子電解質薄膜 58
3-2-1-3 利用傳統實驗法製備三成分膠態高分子電解質薄膜 59
3-2-1-4 利用混合物實驗法製備三成分膠態高分子電解質 60
3-2-1-5 含無機填料的膠態高分子電解質薄膜製備 62
3-2-2 膠態高分子電解質材料性質分析 64
3-2-2-1 以掃描式電子顯微鏡 (Scanning electron microscope, SEM) 分析表面型態 64
3-2-2-2 以 X 射線散射光譜儀 (Energy-dispersive X-ray spectroscopy, EDS) 分析膠態高分子電解質之元素 64
3-2-2-3 膠態高分子薄膜吸液率之量測 64
3-2-2-4 膠態高分子薄膜之孔隙度 (Porosity, P) 量測 65
3-2-2-5膠態高分子薄膜機械性質測定 66
3-2-3 膠態高分子電解質電化學性質量測 67
3-2-3 A. 以交流阻抗 (AC impedance) 分析膠態高分子電解質之離子電導率(Ionic conductivity, σ) 67
3-2-3 B. 以線性掃描伏安法 (Linear Sweep Voltammetry, LSV) 分析膠態高分子電解質之電化學性質 70
3-2-4 鈕扣型鋰離子電池組裝與充放電 72
3-2-4 A. 鈕扣型鋰離子電池之組裝 72
3-2-4 B. 鈕扣型鋰離子電池之充放電 74
第四章 結果與討論 75
4-1 PVDF 膠態高分子電解質的製備與性質 75
4-1 A. 表面組態分析 75
4-1 B. 液態電解液吸收率及對薄膜厚度的影響 78
4-1 C. 孔隙度 81
4-1 D. 機械性質 83
4-1 E. 離子電導率 86
4-1 F. 電化學窗口與分解電壓 89
4-2 PAN 膠態高分子電解質的製備與性質 93
4-2 A. 表面組態分析 93
4-2 B. 液態電解液吸收率及對薄膜厚度的影響 96
4-2 C. 孔隙度 99
4-2 D. 機械性質 101
4-2 E. 離子電導率 104
4-2 F. 電化學窗口與分解電壓 107
4-3 傳統實驗法製備 PVDF/PAN/TPU 膠態高分子電解質與性質 110
4-3-1 TPU 之上限 110
4-3-2 設定 TPU 組成為 0.2 時 PVDF 與 PAN 組成之影響 112
4-3-2 A. 液態電解液吸收率及對薄膜厚度的影響 112
4-3-2 B. 離子電導率 116
4-4 傳統實驗法製備 PVDF/PAN/PS 膠態高分子電解質與性質 119
4-4-1 PS 之上限 119
4-4-2 設定 PS 組成為 0.2 時 PVDF 與 PAN 組成之影響 121
4-4-2 A. 液態電解液吸收率及對薄膜厚度的影響 121
4-4-2 B. 離子電導率 125
4-5 利用混合物實驗法製備 PVDF/PAN/TPU 膠態高分子電解質與其性質 128
4-5-1 混合物實驗法製備PVDF/PAN/TPU 膠態高分子電解質薄膜及其性質 128
4-5-1 A. 離子電導率 131
4-5-1 B. 電化學窗口與分解電壓 134
4-5-1 C. 機械性質 136
4-5-2 各回應值之最佳組成 138
4-5-2 A. 最佳離子電導率組成 138
4-5-2 B. 最佳分解電壓組成 142
4-5-2 C. 最佳機械性質組成 146
4-6 利用混合物實驗法製備 PVDF/PAN/PS 膠態高分子電解質與其性質 150
4-6-1 混合物實驗法製備之 PVDF/PAN/PS 膠態高分子電解質薄膜及其性質 150
4-6-1 A. 離子電導率 150
4-6-1 B. 電化學窗口與分解電壓 154
4-6-1 C. 機械性質 156
4-6-2 各回應值之最佳組成 158
4-6-2 A. 最佳離子電導率組成 158
4-6-2 B. 最佳分解電壓組成 162
4-6-2 C. 最佳機械性質組成 166
4-7 最佳組成 PVDF/PAN/TPU 膠態高分子電解質添加無機奈米粒子之影響 170
4-7 A. 表面組態分析 170
4-7 B. 孔隙度 182
4-7 C. 離子電導率 184
4-7 D. 電化學窗口與分解電壓 186
4-7 E. 機械性質 188
4-8 最佳組成 PVDF/PAN/PS 膠態高分子電解質添加無機奈米粒子之影響 190
4-8 A. 表面組態分析 190
4-8 B. 孔隙度 201
4-8 C. 離子電導率 203
4-8 D. 電化學窗口與分解電壓 205
4-8 E. 機械性質 207
4-9 最佳組成 PVDF/PAN/TPU 膠態高分子電解質應用於無陽極鋰半電池的性質 209
4-9-1 PVDF/PAN/TPU 膠態高分子電解質膜厚之影響 217
4-9-1 A. Cu foil/ PVDF/PAN/TPU (0.214 ~ 0.238 mm) /Li 電池之充放電性質 217
4-9-1 B. Cu foil/ PVDF/PAN/TPU (0.300 ~ 0.329 mm) /Li 電池之充放電性質 224
4-9-1 C. Cu foil/ PVDF/PAN/TPU (0.415 ~ 0.421 mm) /Li 電池之充放電性質 231
4-9-1 D. Cu foil/ PVDF/PAN/TPU (0.513 ~ 0.526 mm) /Li 電池之充放電性質 238
4-9-2 PVDF/PAN/TPU 膠態高分子電解質添加無機填料對充放電性質影響 243
4-9-2 A. Cu foil/ PVDF/PAN/TPU(2 wt% TiO2) /Li 電池之充放電性質 243
4-9-2 B. Cu foil/ PVDF/PAN/TPU(2 wt% SiO2) /Li 電池之充放電性質 251
4-9-2 C. Cu foil/ PVDF/PAN/TPU/(2 wt% Al2O3) /Li 電池之充放電性質 258
4-9-3 Cu foam/ PVDF/PAN/TPU (0.305 ~ 0.311 mm) /Li 電池之充放電性質 265
4-10 最佳組成 PVDF/PAN/PS 膠態高分子電解質應用於無陽極鋰半電池的性質 272
4-10-1 PVDF/PAN/PS 膠態高分子電解質膜厚之影響 279
4-10-1 A. Cu foil/ PVDF/PAN/PS (0.225 ~ 0.234 mm) /Li 電池之充放電性質 279
4-10-1 B. Cu foil/ PVDF/PAN/PS (0.299 ~ 0.300 mm) /Li 電池之充放電性質 286
4-10-1 C. Cu foil/ PVDF/PAN/PS (0.397 ~ 0.412 mm) /Li 電池之充放電性質 293
4-10-2 PVDF/PAN/PS 膠態高分子電解質添加無機填料對充放電性質影響 297
4-10-2 A. Cu foil/ PVDF/PAN/PS(2 wt% TiO2) /Li 電池之充放電性質 297
4-10-2 B. Cu foil/ PVDF/PAN/PS(2 wt% SiO2) /Li 電池之充放電性質 304
4-10-2 C. Cu foil/ PVDF/PAN/PS(2 wt% Al2O3) /Li 電池之充放電性質 311
4-10-3 Cu foam/ PVDF/PAN/PS (0.290 ~ 0.312 mm) /Li 電池之充放電性質 317
第五章 綜合討論 324
5-1 以混合物實驗法製備之 PVDF/PAN/TPU 與 PVDF/PAN/PS系統的膠態高分子薄膜的比較 324
5-2 PVDF/PAN/TPU 與 PVDF/PAN/PS 系統之最佳組成組裝無陽極鋰半電池之充放電性質比較 326
第六章 結論與建議 328
第七章 參考文獻 332
第八章 附錄 343
8-1 以混合物實驗法製備之 PVDF/PAN/TPU 膠態高分子電解質以離子電導率為回應值之 SAS 統計系統程式碼 343
8-2 以混合物實驗法製備之 PVDF/PAN/TPU 膠態高分子電解質以離子電導率為回應值之 SAS 統計系統計算結果 344
8-3 混合物實驗法中以不同回應值之 C++ 軟體程式碼 [97] 349
8-3 A. 計算單一組成之程式碼 349
8-3 B. 計算 0.001 ~ 1.0 區間(多組成)之連續程式碼 352
8-4 以混合物實驗法製備之 PVDF/PAN/TPU 膠態高分子電解質以分解電壓為回應值之 SAS 統計系統程式碼 355
8-5 以混合物實驗法製備之 PVDF/PAN/TPU 膠態高分子電解質以分解電壓為回應值之 SAS 統計系統計算結果 356
8-6 以混合物實驗法製備之 PVDF/PAN/TPU 膠態高分子電解質以機械性質為回應值之 SAS 統計系統程式碼 360
8-7 以混合物實驗法製備之 PVDF/PAN/TPU 膠態高分子電解質以機械性質為回應值之 SAS 統計系統計算結果 361
8-8 以混合物實驗法製備之 PVDF/PAN/PS 膠態高分子電解質以離子電導率為回應值之 SAS 統計系統程式碼 366
8-9 以混合物實驗法製備之 PVDF/PAN/PS 膠態高分子電解質以離子電導率為回應值之 SAS 統計系統計算結果 367
8-10 以混合物實驗法製備之 PVDF/PAN/PS 膠態高分子電解質以分解電壓為回應值之 SAS 統計系統程式碼 372
8-11 以混合物實驗法製備之 PVDF/PAN/PS 膠態高分子電解質以分解電壓為回應值之 SAS 統計系統計算結果 373
8-12 以混合物實驗法製備之 PVDF/PAN/PS 膠態高分子電解質以機械性質為回應值之 SAS 統計系統程式碼 378
8-13 以混合物實驗法製備之 PVDF/PAN/PS 膠態高分子電解質以機械性質為回應值之 SAS 統計系統計算結果 379
1.S. S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries, J. Power Sources, 164 (2007) 351-364.
2.X. Shi, N. Ma, Y. Wu, Y. Lu, Q. Xiao, Z. Li and G. Lei, Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery, Solid State Ionics, 325 (2018) 112-119.
3.S. Liang, W. Yan, X. Wu, Y. Zhanga, Y. Zhu, H. Wang and Y. Wu, Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance, Solid State Ionics, 318 (2018) 2-18.
4.湯茵涵,以電化學製備 Si-PANi/PANi 與 Si@rGO-PANi/PANi 複合膜作為鋰離子電池陽極材料之性質,國立勤益科技大學化工與材料工程系碩士論文,2017 年。
5.周昀宣,利用交流阻抗分析鉛酸電池的老化機制,國立勤益科技大學化工與材料工程系碩士論文,2022年。
6.B. Diouf, R. Pode, Potential of lithium-ion batteries in renewable energy, Renewable Energy, 76 (2015) 375-380.
7.盧瀅捷,應用於鋰電池負極架構之製備與性質,國立勤益科技大學化工與材料工程系碩士論文,2022年。
8.李季霖,台灣鋰離子電池產業發展現況研究,國立暨南大學兩岸高階主管經營管理境外碩士在職學位學程碩士論文,2018年。
9.Rechargeable Poly Lithium-Ion Battery Global Market Report 2024, The Business Research Company, https://www.gii.tw/report/tbrc1414530-rechargeable-poly-lithium-ion-battery-global.html.
10.電動車輛產業相關產業政策,產業價值鏈資訊平台,https://ic.tpex.org.tw/policy.php?ic=A300。
11.Global Consumer Electronics Market - 2024-2031, DataM Intelligence, https://www.gii.tw/report/dmin1423506-global-consumer-electronics-market.html.
12.K. Bicy, A. B. Gueye, D. Rouxel, N. Kalarikkal, S. Thomas, Lithium-ion battery separators based on electrospun PVDF: A review, Surfaces and Interfaces, 31 (2022) 101997.
13.張温琤,聚合物鋰離子電池之熱穩定性評估,國立雲林科技大學環境與安全衛生工程系環境與安全衛生工程組碩士論文,2015年。
14.Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208 (2012) 210-224.
15.許峰碩,膠態電解質鋰離子電池負極的研究,國立中興大學物理研究所碩士論文,2014年。
16.徐郁晴,中孔性二氧化鈦微球於固態染料敏化太陽能電池織製備與特性研究,國立臺灣大學工學院應用力學研究所碩士論文,2010年。
17.朱芸芸,以靜電紡絲製備染料敏化太陽能電池之光陽極,國立臺北科技大學工程科技研究所博士論文,2013年。
18.M. Zhu, J. Wu, Y. Wang, M. Song, L. Long, S. H. Siyal, X. Yang, G. Sui, Recent advances in gel polymer electrolyte for high-performance lithium batteries, J. Energy Chemistry, 37 (2019) 126-142.
19.陳泊余,離子液體的發展及其在電化學與其他領域的應用 – 獨特的溶劑系統,化學,第 64 卷 (2006),第 2 期,235-259。
20.S. Na, R. K. Singh, R. Dhar, Momentous past and key advancements in ionic liquid mediated polymer electrolyte for application in energy storage, Energy Res. , 2021 1-30.
21.林宇杏、李玉郎、鄧熙聖,高效能膠固態電解質在先進電池元件的應用,SEP 2021 工程,第 94 卷、第 3 期,51-67。
22.廖譽凱、胡淑芬、劉如熹,鋰離子電池用之固態電解質介紹,化學,第 76 卷 (2018),第 3 期,157-166。
23.G. Feuillade, Ph. Perche , Ion-conductive macromolecular gels and membranes for solid lithium cells, J. Applied Electrochemistry, 5 (1975) 63-69.
24.K. S. Ngai, S. Ramesh, K. Ramesh, J. C. Juan, A review of polymer electrolytes: fundamental,approaches and applications, Ionics, 22 (2016) 1259-1279.
25.A. M. Stephan, Review on gel polymer electrolytes for lithium batteries, European Polymer Journal, 42 (2006) 21-42.
26.三星Galaxy Note,維基百科,https://zh.wikipedia.org/zh-tw/%E4%B8%89%E6%98%9FGalaxy_Note_7。
27.P. Lennartz, B. A. Paren, H.-A. Abraham, X. C. Chen, J. A. Johnson, M. Winter, S. H. Yang, G. Brunklaus, Practical considerations for enabling Li|polymer electrolyte batteries, Joule, 7 (2023) 1471-1495.
28.A, Arya , A. L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study, Ionics, 23 (2017) 497-540.
29.S. Xiao, F. Wang, Y. Yang, Z. Chang , Y. Wu, An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries, RSC Advances, 4 (2014) 76-81.
30.C. Gerbaldi, J.R. Nair, G. Meligrana, R. Bongiovanni, S. Bodoardo, N. Penazzi, UV-curable siloxane-acrylate gel-copolymer electrolytes for lithium-based battery applications, Electrochimica Acta, 55 (2010) 1460-1467.
31.B. Clement, M. Lyu, E. S. Kulkarni, T. Lin, Y. Hu, V. Lockett, C. Greig, L. Wang, Recent Advances in Printed Thin-Film Batteries, Engineering, 13 (2022) 238-261.
32.C.M. Costa, R. Gonçalves, S. Lanceros-Méndez, Recent advances and future challenges in printed batteries, Energy Storage Materials, 28 (2020) 216-234.
33.M. Cheng, Y. Jiang, W. Yao, Y. Yuan, R. Deivanayagam, T. Foroozan, Z. Huang, B. Song, R. Rojaee, T. Shokuhfar, Y. Pan, J. Lu, R. Shahbazian-Yassar T. Foroozan, Z. Huang, B. Song, R. Rojaee, T. Shokuhfar, Y. Pan, J. Lu, and R. Shahbazian-Yassar, Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries, Advanced Science, (2018) 1800615.
34.J.-M. Tarascona, A.S. Gozdzb, C. Schmutzb, F. Shokoohib, P.C. Warrenb, Performance of Bellcore’s plastic rechargeable Li-ion batteries, Solid State tonics, 86-88 (1996) 49-54.
35.H.P. Zhang、P. Zhang、G.C. Li、Y.P. Wu、D.L. Sun, A porous poly(vinylidene fluoride) gel electrolyte for lithium ion batteries prepared by using salicylic acid as a foaming agent, J. Power Sources, 189 (2009) 594-598.
36.陳心傑,混摻對聚偏二氟乙烯奈米纖維物性與生物相容性之影響,國立台灣科技大學高分子工程研究所博士論文,2010年。
37.W. Li, Y. Wu, J. Wang, D. Huang, L. Chen, G. Yang, Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery, European Polymer Journal, 67 (2015) 365-372.
38.韓琳、陶林娜、潘其營、陳榮源、張忠厚,靜電紡絲三明治結構靜電紡絲膜的可控製備及其電化學性能,塑膠科技 Plastics Science and Technology - 理論與研究,第 5 卷 (2022),39-42。
39.E. Quartarone, P. Mustarelli, A. Magistris, PEO-based composite polymer electrolytes, Solid State Ionics, 110 (1998) 1-14.
40.M.-K. Song , Y.-T. Kim, J.-Y. Cho, B. W. Cho, B. N. Popov, H.-W. Rhee, Composite polymer electrolytes reinforced by non-woven fabrics, J. Power Sources, 125 (2004) 10-16.
41.J.-K. Kim, G. Cheruvally, X. Li, J.-H. Ahn, K.-W. Kim, H.-J. Ahn, Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries, J. Power Sources, 178 (2008) 815-820.
42.S. Rajendran, O. Mahendran, R. Kannan, Ionic conductivity studies in composite solid polymer electrolytes based on methylmethacrylate, J. Physics and Chemistry of Solids, 63 (2002) 303-307.
43.S. Ramesh, T. S. Yin, C.-W. Liew, Effect of dibutyl phthalate as plasticizer on high-molecular weight poly(vinyl chloride)–lithium tetraborate-based solid polymer electrolytes, Ionics, 17 (2011) 705-713.
44.C.-C. Yang, S.-J. Lin, Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolyte for Zn–air battery, J. Power Sources, 112 (2002) 497-503.
45.W. Kam, C.-W. Liew, J. Y. Lim, S. Ramesh, Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes, Ionics, 20 (2014) 665-674.
46.Y.W. Chen-Yang, H.C. Chen, F.J. Lin, C.C. Chen, Polyacrylonitrile electrolytes: 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3, Solid State Ionics, 150 (2002) 327-335.
47.S. Ramesh, O. Uma, R. Shanti, Lim Jing Yi, K. Ramesh, Preparation and characterization of poly (ethyl methacrylate) based polymer electrolytes doped with 1-butyl-3-methylimidazolium trifluoromethanesulfonate, Measurement, 48 (2014) 263-273.
48.H. J. Woo, C. W. Liew, S.R. Majid, A K Arof, Poly( -caprolactone)-based polymer electrolyte for electrical double-layer capacitors, High Perform Polym, 26 (2014) 637-640.
49.M.F.Z. Kadir, S.R. Majid, A.K. Arof, Plasticized chitosan–PVA blend polymer electrolyte based proton battery, Electrochimica Acta, 55 (2010) 1475-1482.
50.M. M. Nasef, R. R. Suppiah, K. Z. M. Dahlan, Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization, Solid State Ionics, 171 (2004) 168-172.
51.X. Shi, N. Ma, Y. Wu, Y. Lu, Q. Xiao, Z. Li, G. Lei, Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery, Solid State Ionics, 325 (2018) 112-119.
52.M.M. Nasef, H. Saidi, K.Z.M. Dahlan, Preparation of composite polymer electrolytes by electron beam-induced grafting: Proton- and lithium ion-conducting membranes, Nuclear Instruments and Methods in Physics Research Stion B: Beam Interactions with Materials and Atoms, 265 (2007) 168-172.
53.C.-L. Chen, H. Teng, Y.-L. Lee, Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate), J. Materials Chemistry, 21 (2011) 1193-119.
54.H. Akashi, K. Sekai, K.-i. Tanaka, A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries, Electrochimica Acta, 43 (1998) 1193-1197.
55.黃莉玉,聚丙烯腈結合多醚基高分子為主架構之膠態電解質在鋰離子電池之應用,國立成功大學化學工程學系碩士論文,2014 年。
56.R. Prasanth, V. Aravindan, M. Srinivasan, Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries-Preparation and electrochemical characterization, J. Power Sources, 202 (2012) 299-307.
57.Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen, M. Chen, Advances and prospects of PVDF based polymer electrolytes, J. Energy Chemistry, 64 (2022) 62-84.
58.N. Wu, Q. Cao, X. Wang, S. Li, X. Li, H. Deng, In situ ceramic fillers of electrospun thermoplastic polyurethanepoly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries, J. Power Sources, 196 (2011) 9751-9756.
59.L. Tan, Y. Deng, Q. Cao, B. Jing, X. Wang, Y. Liu, Gel electrolytes based on polyacrylonitrile/thermoplastic polyurethane/polystyrene for lithium-ion batteries, Ionics, 25 (2019) 3673-3682.
60.P. Alves, J.F.J. Coelho, J. Haack, Astrid Rota, Arie Bruinink M.H. Gil, Surface modification and characterization of thermoplastic polyurethane, European Polymer Journal, 45 (2009) 1412-1419.
61.X. Wang, X. Luo, X. Wang, Study on blends of thermoplastic polyurethane and aliphatic polyester: morphology, rheology, and properties as moisture vapor permeable films, Polymer Testing, 24 (2005) 18-24.
62.K. Palanivelu, P. Sivaraman, M. D. Reddy, Studies on thermoplastic polyurethane toughened poly(butylene terephthalate) blends, Polymer Testing, 21 (2002) 345-351.
63.R.-L. Marie, C. Pellerin, Partial Disentanglement in Continuous Polystyrene Electrospun Fibers, Macromolecules, 48 (2015) 37-42.
64.Wang Zhiyan, Shen Lin, Deng Shungui, Cui Ping, Yao Xiayin, 10 μm-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries, Advanced Materials, 33 (2021) 2100353.
65.S. Fu, L.-L. Zuo, P.-S. Zhou, X.-J. Liu, Q. Ma, M.-J. Chen, J.-P. Yue, X.-W. Wu, Q. Deng, Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries, Mater. Chem. Front., 5 (2021) 5211-5232.
66.Y. Ding, P. Zhang, Z. Long, Y. Jiang, F. Xu, W. Di, Preparation of PVdF-based electrospun membranes and their application as separators, Sci. Technol. Adv. Mater., 9 (2008) 015005.
67.A. R. Polu, H.-W. Rhee, Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12–LiTDI solid polymer electrolyte, J. Industrial and Engineering Chemistry, 37 (2016) 347-353.
68.K. Bicy, P. A. Paul, N. Kalarikkal, A. M. Stephen, V. G. Geethamma, D. Rouxel, S. Thomas, Effects of nanofillers on morphology and surface wetting of microporous polypropylene composite membranes, Materials Chemistry and Physics, 257 (2021) 123742.
69.P. Raghavan, J.-W. Choi, J.-H. Ahn, G. Cheruvally, G. S. Chauhan, H.-J. Ahn, Changwoon Nac, Novel electrospun poly(vinylidene fluoride-co-hexafluoropropylene)–in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries, J. Power Sources, 184 (2008) 437-443.
70.Y. Xu, J.-W. Zhu, J.-B. Fang, X. Li, M. Yu, Y.-Z. Long, Electrospun High-Thermal-Resistant Inorganic Composite Nonwoven as Lithium-Ion Battery Separator, J. Nanomaterials, 10 (2020) 3879040.
71.Q. Fu, G. Lin, X. Chen, Z. Yu, R. Yang, M. Li, X. Zeng, J. Chen, Mechanically Reinforced PVdF/PMMA/SiO2 Composite Membrane and Its Electrochemical Properties as a Separator in Lithium-Ion Batteries, Energy Technology, 6 (2017) 144-152.
72.W. Xiaolin, L. Jie, W. Jianyan, G. Hang, Electrospun PVDF/PMMA/SiO2 membrane separators for rechargeable lithium-ion batteries, Key Engineering Materials, 645 (2015) 1201-1206.
73.D. Wu, L. Deng, Y. Sun, K. S. Teh, C. Shi, Q. Tan, J. Zhao, D. Suna, L. Lin, A high-safety PVDF/Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating, RSC Adv., 7 (2017) 24410-24416.
74.S. Wu, J. Ning, F. Jiang, J. Shi, F. Huang, Ceramic Nanoparticle-Decorated Melt-Electrospun PVDF Nanofiber Membrane with Enhanced Performance as a Lithium-Ion Battery Separator, ACS Omega, 4 (2019) 16309-16317.
75.K. Bicy, S. Suriyakumar, P. P. Anu, Anu A. S., N. Kalarikkal, A. M. Stephen, Geethamma V. G., D. Rouxel, S. Thomas, Highly lithium ion conductive, Al2O3 decorated electrospun P(VDF-TrFE) membranes for lithium ion battery separators, New J. Chemistry, 42 (2018) 19505-19520.
76.M.-Y. An, H.-T. Kim, D.-R. Chang, Multilayered separator based on porous polyethylene layer, Al2O3 layer, and electro-spun PVdF nanofiber layer for lithium batteries, J. Solid State Electrochemistry, 18 (2014) 1807-1814.
77.L. Wang, J. Yan, R. Zhang, Y. Li, W. Shen, J. Zhang, M. Zhong, S. Guo, Core–Shell PMIA@PVdF-HFP/Al2O3 Nanofiber Mats In Situ Coaxial Electrospun on LiFePO4 Electrode as Matrices for Gel Electrolytes, ACS Appl. Mater. Interfaces, 13 (2021) 9875-9884.
78.洪哲穎、陳國誠,回應曲面實驗設計法在微生物酵素生產上之應用,化工,第 39 卷 (1992),3-18。
79.黎正中,實驗設計與分析,高立圖書公司出版,1998 年。
80.劉本強,質子交換膜燃料電池中膜電極組製備方法之研究與比較,私立東海大學化學工程與材料工程研究所碩士論文,2009 年。
81.Raymond H. M. , Douglas C. M. , Chistine M. A.-C. , Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley and Sons Inc , 4 (2016), 693-784.
82.溫添進、林世民,混合物的實驗設計,化工,第 38 卷,1991 年。
83.J. Cornell, Experiments with Mixtures:Designs, Models, and the Analysis of Mixture Data, Edition, Wiley, 3 (2002) 144-149.
84.S.-S. Choi, Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, K.-S. Han, Electrospun PVDF nanofiber web as polymer electrolyte or separator, Electrochimica Acta, 50 (2004) 339-343.
85.P. Raghavan, J. Manuel, X. Zhao, D.-S. Kim, J.-H. Ahn, C. Nah, Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries, J. Power Sources, 196 (2011) 6742-6749.
86.Y.-J. Kim, H.-S. Kim, C.-H. Doh, S. H. Kim, S.-M. Lee, Technological potential and issues of polyacrylonitrile based nanofiber non-woven separator for Li-ion rechargeable batteries, J. Power Sources, 244 (2013) 196-206.
87.C. Ma, J. Zhang, M. Xu, Q. Xia, J. Liu, S. Zhao, L. Chen, A. Pan, D. G. Ivey, W. Wei, Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries, J. Power Sources, 317 (2016) 103-111.
88.J. Shim, D.-G. Kim, H. J. Kim, J. H. Lee, J.-C. Lee, Polymer Composite Electrolytes Having Core–Shell Silica Fillers with Anion-Trapping Boron Moiety in the Shell Layer for All-Solid-State Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 7 (2015) 7690-7701.
89.C. Zhao, X. Yao, H. Yang, X. Jiao, L. Wang, Hierarchical porous carbon nanofibers with lithiophilic metal oxide crystalline grains for long-life Li metal anodes, Composites Communications, 26 (2021) 100789.
90.C. Zhao, S. Xiong, H. Li, Z. Li, C. Qi, H. Yang, L. Wang, Y. Zhao, T. Liu, A dendrite-free composite Li metal anode enabled by lithiophilic Co, N codoped porous carbon nanofibers, J. Power Sources, 483 (2021) 229188.
91.W. Liu, P. Zhai, S. Qin, J. Xiao, Y. Wei, W. Yang, S. Cui, Q. Chen, C. Jin, S. Yang, Y. Gong, Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growth, J. Energy Chemistry, 56 (2021) 463-469.
92.Z.-W. Zhu, Z.-Y. Wang, S. Liu, G.-R. Li, X.-P. Gao, Uniform lithium plating within 3D Cu foam enabled by highly reversible Ag nanoparticles, Electrochimica Acta, 379 (2021) 138152.
93.F. Wu, H. Quan, J. Han, X. Peng, Z. Yan, X. Zhanga, Y. Xiang, Free-standing lithiophilic Ag-nanoparticle-decorated 3D porous carbon nanotube films for enhanced lithium storage, RSC Advances, 51 (2020) 30880-30886.
94.C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, L. Hu, Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode, Advanced Materials, 29 (2017) 1702714.
95.B. G. Kim, D. W. Kang, G. Park, S. H. Park, S.-M. Lee, J. W. Choi, Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries, Chemical Engineering Journal, 422 (2021) 130017.
96.Y. Liu, X. Peng, Q. Cao, Bo Jing, Xianyou Wang, Yuanyuan Deng, Gel Polymer Electrolyte Based on Poly(vinylidene fluoride)/Thermoplastic Polyurethane/Polyacrylonitrile by the Electrospinning Technique, J. Phys. Chem. C , 121 (2017) 19140-19146.
97.K. Zhong, X. Hou, Y. Xue, W. Huang, B. Meng, L. Zhou, Z. Fang, L. Li, Lithium metal deposition under the geometrical confinement effect: Dendritic copper foam current collector, J. Colloid and Interface Science, 653 (2024) 697-706.
98.邏輯林,程式設計與生活 - 使用 C 語言,全華圖書股份有限公司,第四版,2018 年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊