跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮氏寶玉
研究生(外文):THI BAO NGOC-NGUYEN
論文名稱:基於改良型最佳化演算法之太陽光電模組陣列全域最大功率追蹤器
論文名稱(外文):An Modified Optimal Maximum Power Point Tracker for Photovoltaic Module Arrays
指導教授:趙貴祥
指導教授(外文):CHAO, KUEI-HSIANG
口試委員:陳政裕邱國珍趙貴祥
口試委員(外文):CHEN, JENG-YUECHIOU, GWO-JENCHAO, KUEI-HSIANG
口試日期:2024-07-27
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:169
中文關鍵詞:太陽光電模組陣列最大功率點追蹤器最大功率點修正型之功率回授法全域最大功率點局部最大功率點改良型貓群演算法追蹤速度動態響應穩態性能
外文關鍵詞:photovoltaic module arraymaximum power point trackermaximum power pointimproved power feedback methodglobal maximum power pointlocal maximum power pointmodified cat swarm optimizationtracking speed dynamic responsesteady performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目的在於研發太陽光電模組陣列(photovoltaic module array, PVMA)在不同日照强度及溫度下之最大功率追蹤器(maximum power point tracker, MPPT)。由於採用傳統型之功率回授法(power feedback method, PFM)進行最大功率追蹤,一旦日照强度及溫度變化時,其太陽光電模組陣列之最大功率點(maximum power point, MPP)也會隨著改變。然而,因傳統之功率回授法的追蹤步伐係採固定值,因此可能使得追蹤至最大功率點所需的時間較久。基於此,本論文首先提出一建構於修正型功率回授法(improved power feedback method, IPFM)之最大功率追蹤器,使其追蹤步伐隨著太陽光電模組陣列之功率-電壓(P-V)特性曲線的斜率做適應性調變,並設定其開始追蹤之起始電壓為太陽光電模組陣列在標準測試條件(standard test condition, STC)下之最大功率點電壓Vmp 的0.8倍。由模擬及實測結果證明所提出之修正型功率回授法在不同工作環境下,均較傳統型功率回授法具有較佳之追蹤速度響應及穩態性能。
然而,當日照强度突然變化或太陽光電模組陣列中部份模組被遮蔭時,其太陽光電模組陣列之最大功率點也會隨著改變,且功率-電壓(P-V)特性曲線可能出現多峰值的現象,因此將可能使得追蹤至最大功率點所需的時間變長,甚至在某些情況下無法追蹤至全域最大功率點(global maximum power point, GMPP),而只能追蹤至局部最大功率點(local maximum power point, LMPP)。為了避免上述的問題,本論文再提出一建構於改良型貓群演算法(modified cat swarm optimization, MCSO)之最大功率追蹤器,使其追蹤步伐可隨著太陽光電模組陣列之功率-電壓(P-V)特性曲線的斜率及叠代公式中之慣性權重進行調整,並設定其開始追蹤之起始電壓為太陽光電模組陣列在標準測試條件下之最大功率點電壓Vmp 的0.8倍。由模擬及實測結果亦證明本論文所提出之改良型貓群演算法在太陽光電模組陣列部分模組受到不同遮蔭比例及日照强度突變下,均較傳統型貓群演算法具有較佳之追蹤速度動態響應及穩態性能。

The main purpose of this thesis is for research and development of the maximum power point tracker (MPPT) for a photovoltaic module array (PVMA) under different sunlight intensities and temperatures. As a traditional power feedback method (PFM) is used for maximum power tracking, once the sunlight intensity and the temperature change, the maximum power point (MPP) of the photovoltaic module array will change accordingly. Nevertheless, the fixed value is used for the tracking step in the traditional power feedback method, so that it may take a longer time to track to the maximum power point. For this purpose, firstly, an maximum power point tracker based on the improved power feedback method (IPFM) is proposed in this thesis, so that its tracking step is adjusted adaptively according to the slope of the P-V characteristic curve of the photovoltaic module array. Also, the initial voltage for starting tracking is set to 0.8 times of the maximum power point voltage Vmp of the photovoltaic module array under the standard test condition. From simulation and test results, it is proved that the proposed improved power feedback method yields better tracking speed response and steady-state performance compared to the traditional power feedback method under different working environments.
However, upon sudden change of solar irradiance or certain modules in PVMA were shaded, the MPP of PVMA would change along, and multiple peak values may appear on the P-V characteristic curve. Therefore, should the tracking pace be constant, the duration required for tracking MPP might extend and under certain circumstances even, the global maximum power point (GMPP) might not be tracked, where only the local maximum power point (LMPP) could be tracked. To prevent the above-mentioned problem, a maximum power point tracker based on modified cat swarm optimization (MCSO) method was proposed in this thesis, so the tracking paces could be adjusted along with the slope of the P-V characteristic curve for PVMA and the inertia weight of the iteration formula. Moreover, the initial voltage for tracking commencement was set to 0.8 times voltage Vmp at the maximum power point of PVMA under STC. From the simulation and experimental results, it was proved that under different shading percentages and sudden change of solar irradiance for partial modules in PVMA, the MCSO method proposed in this thesis provided better tracking speed, dynamic response and steady performance comparing to conventional cat swarm optimization (CSO) method.

摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景及動機 1
1.2 文獻探討 2
1.3 研究方法 3
1.4 論文大綱 4
第二章 太陽光電發電系統 5
2.1 前言 5
2.2 太陽光電模組之工作原理 5
2.3 太陽光電模組陣列之遮蔭特性 10
第三章 太陽光電模組陣列之最大功率追蹤 15
3.1 前言 15
3.2 傳統最大功率追蹤技術 15
3.2.1 定電壓法 15
3.2.2 擾動觀察法 18
3.2.3 功率回授法 18
3.3智慧型最大功率追蹤技術 22
3.3.1粒子群演算法 23
3.3.2螢火蟲演算法 24
3.3.3灰狼群演算法 26
3.3.4人工蜂群演算法 28
3.3.5貓群演算法 29
3.4 所提之修正型功率回授法 35
3.4.1 起始追蹤電壓固定之修正型功率回授法 35
3.4.2 起始追蹤電壓固定及調整追蹤步長之修正型功率回授法 35
3.5 所提之改良型貓群演算法 37
3.5.1追蹤起始電壓固定之改良型貓群演算法 37
3.5.2 追蹤起始電壓固定及結合P-V曲線斜率調整追蹤步伐之改良型貓群演算法 38
3.5.3 追蹤起始電壓固定及結合慣性權重調整追蹤步伐之改良型貓群演算法 40
3.5.4 追蹤起始電壓固定及結合P-V曲線斜率與慣性權重調整追蹤步伐之改良型貓群演算法 41
第四章 最大功率追蹤控制之轉換器設計 43
4.1 前言 43
4.2傳統升壓型轉換器之電路分析 44
4.3傳統升壓型轉換器之電感設計 47
第五章 模擬及實驗結果 50
5.1前言 50
5.2硬體實作電路架構 50
5.2.1數位信號處理器 50
5.2.2電壓及電流感測電路 52
5.2.3開關元件之隔離驅動電路 54
5.3模擬結果 56
5.3.1採用修正型功率回授法之模擬結果 57
5.3.2採用改良型貓群演算法之模擬結果 59
5.4實測結果 77
5.4.1採用修正型功率回授法之實測結果 80
5.4.2採用改良型貓群演算法之實測結果 85
第六章 結論與未來研究方向 162
6.1結論 162
6.2未來研究方向 162
參考文獻 164

[1]經濟部能源局,111年發電概況,2022年,https://www.moeaea.gov.tw/ecw/populace/content/Content.aspx?menu_id=14437
[2]Q. Wei, G. Shi, R. Song and Y. Liu, “Adaptive Dynamic Programming-based Optimal Control Scheme for Energy Storage Systems with Solar Renewable Energy,” IEEE Transactions on Industrial Electronics, Vol. 64, No. 7, pp. 5468-5478, July 2017.
[3]A. Safdarian, M. Fotuhi-Firuzabad and F. Aminifar, “Compromising Wind and Solar Energies from the Power System Adequacy Viewpoint,” IEEE Transactions on Power Systems, Vol. 27, No. 4, pp. 2368-2376, November 2012.
[4]Y. Hishikawa, H. Tobita, A. Sasaki, K. Yamagoe, T. Onuma and Y. Tsuno, “Current-voltage Characteristics of Novel PV Devices under Various Irradiance and Temperature Conditions,” 2013 IEEE 39th Photovoltaic Specialists Conference, pp. 1417-1422, June 2013.
[5]H. Patel and V. Agarwal, “Maximum Power Point Tracking Scheme for PV Systems Operating under Partially Shaded Conditions,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 4, pp.1417-1422, April 2008.
[6]J. Wang, Y. Yi, Y. Yang, G. Zhang and S. Huang, “Research on Distributed Multi-peak Maximum Power Tracking Control,” The 29th Chinese Control and Decision Conference, pp. 2237-2341, May 2017.
[7]M. A. S. Masoum, H. Dehbonei and E. F. Fuchs, “Theoretical and Experimental Analyses of Photovoltaic Systems with Voltageand Current-based Maximum Power-point Tracking,” IEEE Transactions on Energy Conversion, Vol. 17, No. 4, pp. 514-522, December 2002.
[8]G. J. Yu, Y. S. Jung, J. Y. Choi and G. S. Kim, “A Novel Two-mode MPPT Control Algorithm Based on Comparative Study of Existing Algorithms,” Solar Energy, Vol. 76, No. 4, pp. 455-463, April 2004.
[9]S. H. Hanzaei, S. A. Gorji and M. Ektesabi, “A Scheme-Based Review of MPPT Techniques with Respect to Input Variables Including Solar Irradiance and PV Arrays’ Temperature,” IEEE Access, Vol 8, pp. 182229-182239, October 2020.
[10]N. Femia, G. Lisi, G. Petrone, G. Spagnuolo and M. Vitelli, “Distributed Maximum Power Point Tracking of Photovoltaic Arrays: Novel Approach and System Analysis,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, pp. 2610-2621, July 2008.
[11]N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Transactions on Power Electronics, Vol. 20, No. 4, pp. 963-973, July 2005.
[12]A. Tariq and M. J. Asghar, “Development of Microcontroller-based Maximum Power Point Tracker for a Photovoltaic Panel,” In Proceedings of the IEEE Power India Conference, pp.1-5, April 2006.
[13]E. Koutroulis, K. Kalaitzakis and N. C. Voulgaris, “Development of a Microcontroller-based Photovoltaic Maximum Power Point Tracking Control System,” IEEE Transactions on Power Electronics, Vol. 16, No. 1, pp. 46-54, January 2001.
[14]L. Wu, Z. Zhao and J. Liu, “A Single-stage Three-phase Grid-connected Photovoltaic System with Modified MPPT Method and Reactive Power Compensation,” IEEE Transactions on Energy Conversion, Vol. 22, No. 4, pp. 881-886, December 2007.
[15]Y. Ma, X. Zhou, Z. Gao and T. Bai, “Summary of the Novel MPPT (Maximum Power Point Tracking) Algorithm Based on Few Intelligent Algorithms Specialized on Tracking the GMPP (Global Maximum Power Point) for Photovoltaic Systems under Partially Shaded Conditions,” IEEE International Conference on Mechatronics and Automation, pp. 311-315, August 2017.
[16]N. Pragallapati, T. Sen and V. Agarwal, “Adaptive Velocity PSO for Global Maximum Power Control of a PV Array under Nonuniform Irradiation Conditions,” IEEE Journal of Photovoltaics, Vol. 7, No. 2, pp. 624-639, March 2017.
[17]Y. P. Huang, M. Y. Huang and C. E. Ye, “A Fusion Firefly Algorithm with Simplified Propagation for Photovoltaic MPPT under Partial Shading Conditions,” IEEE Transactions on Sustainable Energy, Vol. 11, No. 4, pp. 2641-2652, October 2020.
[18]D. F. Teshome, C. H. Lee, Y. W. Lin and K. L. Lian, “A Modified Firefly Algorithm for Photovoltaic Maximum Power Point Tracking Control under Partial Shading,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 5, No. 2, pp. 661-671, June 2017.
[19]K. H. Chao and S. W. Zhang, “An Adaptive Maximum Power Point Tracker for Photovoltaic Arrays Using an Improved Soft Computing Algorithm”, Applied Sciences, Vol.13, 6952, June 2023.
[20]S. Mohanty, B. Subudhi and P. K. Ray, “A Grey Wolf Optimization Based MPPT for PV System under Changing Insolation Level,” The 2016 IEEE Students’ Technology Symposium, pp. 175-179, September 2016-October 2016.
[21]K. H. Huang, K. H. Chao, Y. P. Kuo and H. H. Chen, “Maximum Power Point Tracking of Photovoltaic Module Arrays Based on a Modified Gray Wolf Optimization Algorithm”, Energies, Vol. 16, 4329, May 2023.
[22]C. González, C. Restrepo, S. Kouro and J. Rodriguez, “MPPT Algorithm Based on Artificial Bee Colony for PV System,” IEEE Access, Vol. 9, pp. 43121-43133, March 2021.
[23]S. C. Chu, P. W. Tsai and J. S. Pan, “Cat Swarm Optimization,” In Proceedings of the Pacific Rim International Conference on Artificial Intelligence, pp. 854-858, August 2006.
[24]太陽能電池原理, Available online:
https://physcourse.thu.edu.tw/st109/%E5%AF%A6%E9%A9%97%E9%A0%85%E7%9B%AE/8%E3%80%91%E5%A4%AA%E9%99%BD%E8%83%BD%E5%AF%A6%E9%A9%97/%E5%A4%AA%E9%99%BD%E8%83%BD%E9%9B%BB%E6%B1%A0/
[25]I. Dynamic, “What is the Composition and Working Principle of Solar Power System, ”https://www.bingsolar.com/bingsolar-system-composition/
[26]M. A. Green, E. D. Dunlop, J. H. Ebinger, M. Yoshita, N. Kopidakis and X. Hao, “Solar Cell Efficiency Tables (Version 61),” Photovoltaics:Research and Applications, Vol. 31, No. 1, pp. 3-16, October 2022.
[27]易科太陽能 SWM20W, Available online:
http://www.ecosolarpanel.com/ecosovhu/products/14585574.html.
[28]T. S. Chien and T. C. Yu, “Analysis and Simulation of Characteristics and Maximum Power Point Tracking for Photovoltaic Systems,” Proceedings of International Conference on Power Electronics and Drive Systems, pp. 1339 - 1344, November 2009.
[29]郭信川、張建仁、劉清祥,粒子群演算法於最佳化問題之研究,第一屆台灣作業研究學會學術研討會暨2004科技與管理學術研討會,2004年,第 419-432頁。
[30]N. Kasa, T. Lida and H. Lwamoto, “Maximum Power Point Tracking with Capacitor Identifier for Photovoltaic Power System,” 2000 Eighth International Conference on Power Electronics and Variable Speed Drives, pp. 1339 - 1344, November 2009.
[31]I. Glasner and J. Appelbaum, “Advantage of Boost vs. Buck Topology for Maximum Power Point Tracker in Photovoltaic Systems,” Proceedings of 19th Convention of Electrical and Electronics Engineers in Israel, Jerusalem, pp. 355-358, November 1996.
[32]M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg and B. Lehman, “Step-up DC–DC Converters: A Comprehensive Review of Voltage-boosting Techniques, Topologies, and Applications,” IEEE Transactions on Power Electronics, Vol. 32, No. 12, pp. 9143-9178, December 2017.
[33]D. W. Hart: Introduction to Power Electronics (Pearson Book Company, 2002) 2nd.
[34]"TMS320F2809 Data Manual, Texas Instruments, October 2003. Available online:
https://www.ti.com/lit/ds/symlink/tms320f2809.pdf?ts=1594465026502&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTMS320F2809."
[35]TOSHIBA-TLP350 Datasheet: Available online:
https://www.glynshop.com/erp/owweb/Daten/Datenblaetter/Toshib
a/TLP350_datasheet_en_20140922.pdf.
[36]"Kyocera Photovoltaic Module KC50 Specifications, Kyocera Solar Industries, May, 2007. Available online: https://documents.unboundsolar.com/legacy/pdfs/ module%20pdf %20folder/KC50.pdf"
[37]J. Brouwer, Y. Chen, K. Smedley, and F. Vacher, “A New Maximum Power Point Tracking Controller for Photovoltaic Power Generation”, Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, pp.58-62, February 2003.
[38]62050H-600S可程控直流電源供應器: Available online: https://www.recotech.cn/chanpin/chroma/zhiliudianyuan/20200319/1073.html

電子全文 電子全文(網際網路公開日期:20280628)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top