跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張秉洋
研究生(外文):ZHANG,BING-YANG
論文名稱:應用旋轉超音波振動輔助於硼矽酸鹽玻璃進行銑孔加工優化研究
論文名稱(外文):Optimization Research on Rotary Ultrasonic Vibration-Assisted Drilling of Borosilicate glass
指導教授:林岳鋒林岳鋒引用關係陳聰嘉
指導教授(外文):LIN,YUE-FENGCHEN,CONG-JIA
口試委員:彭達仁高文顯黃國銘林岳鋒陳聰嘉
口試委員(外文):PENG,DA-RENGAO,WEN-XIANHUANG,GUO-MINGLIN,YUE-FENGCHEN,CONG-JIA
口試日期:2024-07-26
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:65
中文關鍵詞:硼矽酸鹽玻璃BK7玻璃鑽石磨棒螺旋銑削超音波振動輔助加工旋轉超音波加工
外文關鍵詞:Borosilicate glassBK7 glassdiamond grinding rodspiral millingrotary ultrasonic vibration-assisted processingRotary Ultrasonic Machining
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硼矽酸鹽玻璃(BK7玻璃)是一種常見的光學材料,由硼矽酸鹽組成,BK7玻璃具有無氣泡、夾雜物含量低、優異的光學、熱學、機械和化學性能,這些優勢使BK7玻璃在光學領域、半導體、航空航太、高精度儀器等相關產業中具有廣泛的應用,因為BK7玻璃的脆性和高硬度,使其在加工過程難以切削,容易出現裂紋和破損,如何進行加工且達到應用之精度需求,是需要解決之課題。
本研究利用旋轉超音波振動輔助(RUM)及鑽石磨棒對BK7玻璃進行螺旋銑孔加工,以磨棒鑽石粒度、主軸轉速、進給速度和超音波振幅做為控制因子,並以田口法全因子規劃實驗設計加工參數組合,將量測結果導入田口的信號雜訊比(Signal-to-Noise Ratio,S/N比)分析,並使用ANOVA變異數分析進行各水準因子的貢獻性分析,探討BK7玻璃之出入孔脆裂邊和圓柱度與加工參數之相對關係,進行最佳化加工驗證。
由實驗結果得知,旋轉超音波加工輔助技術的入孔脆裂邊均顯著低於傳統磨削(CG)技術,入孔脆裂邊平均改善27.7%,出孔脆裂邊平均改善34.5%;超音波振幅大小會影響圓柱度,圓柱度平均改善1.8%;螺旋銑孔搭配旋轉超音波可以降低軸向的切削力;在出入孔處材料去除方式主要是脆性斷裂,在加工中段處材料去除方式可以觀察到加工表面的脆性裂縫,也可以發現一些延性變形區域;田口最佳化加工參數為主軸轉速5500rpm、進給速度50mm/min、超音波振幅6μm,並且在工件底部增加犧牲材,入孔脆裂邊為1.48%,出孔脆裂邊為1.881%,圓柱度為0.999。
Borosilicate glass (BK7 glass) is a common optical material composed of borosilicate. BK7 glass has no bubbles, low inclusion content, and excellent optical, thermal, mechanical and chemical properties. These advantages make BK7 Glass is widely used in the optical field, semiconductors, aerospace, high-precision instruments and other related industries. Because of the brittleness and high hardness of BK7 glass, it is difficult to cut during the processing process and prone to cracks and breakage. How to process and Meeting the accuracy requirements of applications is a problem that needs to be solved.
This study uses rotating ultrasonic vibration assistance (RUM) and a diamond grinding rod to perform spiral milling on BK7 glass. The diamond particle size of the grinding rod, spindle speed, feed speed and ultrasonic amplitude are used as control factors, and the Taguchi method is adopted. Factor planning experiments design processing parameter combinations, import the measurement results into Taguchi's Signal-to-Noise Ratio (S/N ratio) analysis, and use ANOVA variation analysis to analyze the contribution of each level factor to explore The relative relationship between the brittle edge and cylindricity of the access hole of BK7 glass and the processing parameters was verified for optimal processing.
It is known from the experimental results that the entry hole brittleness edge of the rotary ultrasonic machining-assisted technology is significantly lower than that of the traditional grinding (CG) technology. The entry hole brittleness edge is improved by an average of 27.7%, and the exit hole brittleness edge is improved by an average of 34.5%; The amplitude of ultrasonic wave will affect the cylindricity, and the cylindricity improves by 1.8% on average; spiral milling with rotating ultrasonic wave can reduce the axial cutting force; the material removal method at the access hole is mainly brittle fracture, and the material removal method at the middle part of the processing Brittle cracks on the machined surface can be observed, and some ductile deformation areas can also be found; Taguchi's optimized processing parameters are spindle speed of 5500rpm, feed speed of 50mm/min, ultrasonic amplitude of 6μm, and sacrificial material is added at the bottom of the workpiece to enter the hole. The brittle edge is 1.48%, the hole brittle edge is 1.881%, and the cylindricity is 0.999.
摘要 i
ABSTRACT ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 硼矽酸鹽玻璃品質技術 2
1.2.2 田口方法 3
1.2.3 旋轉超音波加工 4
1.2.4 螺旋下刀銑孔加工 5
1.3 研究動機與目的 6
1.4 論文架構 7
第二章 實驗原理 8
2.1 硼矽酸鹽玻璃材料特性 8
2.2 螺旋下刀銑孔加工原理 10
2.3 旋轉超音波鑽孔過程的運動分析 11
2.4 超音波振動輔助加工原理 12
2.5 田口實驗方法 14
2.6 變異數分析(ANOVA) 15
第三章 研究設備及實驗規劃 16
3.1 實驗設備 16
3.1.1 五軸加工中心機 16
3.1.2 超音波主軸模組 18
3.1.3 數位顯微鏡 20
3.1.4 雷射位移計 21
3.1.5 多分量測力計 22
3.1.6 三次元量測儀 23
3.1.7 熱場發射式電子顯微鏡(FE-SEM) 25
3.2 實驗耗材 26
3.2.1 硼矽酸鹽玻璃(BK7玻璃) 26
3.2.2 電鍍鑽石磨棒 27
3.3 實驗規劃 28
3.3.1 實驗參數設定 29
3.3.2 超音波振幅量測 32
3.3.3 加工實驗流程 33
3.3.4 實驗量測結果計算 34
第四章 結果與討論 36
4.1 刀具夾持露出長度與超音波振幅大小之關係 36
4.2 旋轉超音波振動輔助螺旋銑孔加工實驗結果 41
4.2.1 比較旋轉超音波加工和傳統磨削加工孔脆裂邊減少情形 41
4.2.2 超音波振幅大小對加工品質的影響 45
4.2.3 超音波振幅大小對軸向切削推力的影響 48
4.2.4 田口分析最佳加工參數組合實驗結果 49
4.2.5 ANOVA變異數分析最佳加工參數實驗結果 51
4.3 不同刀具鑽石粒度對加工品質的影響 52
4.4 犧牲材對於出孔加工品質的影響 54
4.5 加工表面微觀結構分析 55
4.6 加工實驗驗證 57
第五章 結論與未來展望 59
5.1 結論 59
5.2 未來展望 61
參考文獻 62
[1]V. Kumar and H. Singh, “Regression analysis of surface roughness and micro-structural study in rotary ultrasonic drilling of BK7,” Ceram Int, vol. 44, no. 14, pp. 16819–16827, Oct. 2018, doi: 10.1016/J.CERAMINT.2018.06.117.
[2]C. Huang, M. Zhou, and H. Zhang, “A cutting force prediction model in axial ultrasonic vibration end grinding for BK7 optical glass considering protrusion height of abrasive grits,” Measurement, vol. 180, p. 109512, Aug. 2021, doi: 10.1016/J.MEASUREMENT.2021.109512.
[3]D. Lv, Y. Zhang, and Y. Peng, “High-frequency vibration effects on hole entrance chipping in rotary ultrasonic drilling of BK7 glass,” Ultrasonics, vol. 72, pp. 47–56, Dec. 2016, doi: 10.1016/J.ULTRAS.2016.07.011.
[4]V. Kumar and H. Singh, “Optimization of rotary ultrasonic drilling of optical glass using Taguchi method and utility approach,” Engineering Science and Technology, an International Journal, vol. 22, no. 3, pp. 956–965, Jun. 2019, doi: 10.1016/J.JESTCH.2019.02.004.
[5]A. Jain, G. Singh, V. Jain, and D. Gupta, “Feasibility analysis for machining serpentine microchannels on glass using rotary ultrasonic milling,” Measurement, vol. 160, p. 107844, Aug. 2020, doi: 10.1016/J.MEASUREMENT.2020.107844.
[6]I. Tlhabadira, I. A. Daniyan, L. Masu, and L. R. VanStaden, “Process design and optimization of surface roughness during M200 TS milling process using the Taguchi method,” in Procedia CIRP, Elsevier B.V., 2019, pp. 868–873. doi: 10.1016/j.procir.2019.03.200.
[7]P. Feng, J. Wang, J. Zhang, and J. Zheng, “Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites,” Ceram Int, vol. 43, no. 1, pp. 791–799, Jan. 2017, doi: 10.1016/J.CERAMINT.2016.10.010.
[8]A. Z. Juri, R. Belli, U. Lohbauer, H. Ebendorff-Heidepriem, and L. Yin, “Edge chipping damage in lithium silicate glass-ceramics induced by conventional and ultrasonic vibration-assisted diamond machining,” Dental Materials, vol. 39, no. 6, pp. 557–567, Jun. 2023, doi: 10.1016/J.DENTAL.2023.04.001.
[9]J. Rajaguru and N. Arunachalam, “Effect of ultrasonic vibration on the performance of deep hole drilling process,” Procedia Manuf, vol. 53, pp. 260–267, Jan. 2021, doi: 10.1016/J.PROMFG.2021.06.029.
[10]A. Barman, R. Adhikari, and G. Bolar, “Evaluation of conventional drilling and helical milling for processing of holes in titanium alloy Ti6Al4V,” Mater Today Proc, vol. 28, pp. 2295–2300, Jan. 2020, doi: 10.1016/J.MATPR.2020.04.573.
[11]R. Iyer, P. Koshy, and E. Ng, “Helical milling: An enabling technology for hard machining precision holes in AISI D2 tool steel,” Int J Mach Tools Manuf, vol. 47, no. 2, pp. 205–210, Feb. 2007, doi: 10.1016/J.IJMACHTOOLS.2006.04.006.
[12]R. Adhikari, G. Bolar, R. Shanmugam, and U. Koklu, “Machinability and surface integrity investigation during helical hole milling in AZ31 magnesium alloy,” International Journal of Lightweight Materials and Manufacture, vol. 6, no. 2, pp. 149–164, Jun. 2023, doi: 10.1016/J.IJLMM.2022.09.006.
[13]Y. Zhou et al., “Study on the removal mechanism and milling quality of helical milling hole of SiCp/Al composites,” J Manuf Process, vol. 109, pp. 379–393, Jan. 2024, doi: 10.1016/j.jmapro.2023.12.041.
[14]H. Lu, C. Li, C. Liu, C. Hua, J. Hao, and M. Xu, “Tool-workpiece interaction characteristics in micro-grinding BK7 glass considering nonlinear vibration,” Mech Syst Signal Process, vol. 218, p. 111581, Sep. 2024, doi: 10.1016/J.YMSSP.2024.111581.
[15]V. Kumar and H. Singh, “Regression analysis of surface roughness and micro-structural study in rotary ultrasonic drilling of BK7,” Ceram Int, vol. 44, no. 14, pp. 16819–16827, Oct. 2018, doi: 10.1016/J.CERAMINT.2018.06.117.
[16]“https://www.schott.com/en-tw/special-selection-tools/interactive-abbe-diagram,” SCHOTT.
[17]T. Ishida et al., “Helical Milling of Carbon Fiber Reinforced Plastics Using Ultrasonic Vibration and Liquid Nitrogen,” in Procedia CIRP, Elsevier B.V., 2014, pp. 13–18. doi: 10.1016/j.procir.2014.07.139.
[18]K. Ding, Y. Fu, H. Su, Y. Chen, X. Yu, and G. Ding, “Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining,” J Mater Process Technol, vol. 214, no. 12, pp. 2900–2907, Dec. 2014, doi: 10.1016/J.JMATPROTEC.2014.06.015.
[19]邱子瑜, “超音波振動輔助高速銑削Inconel 718研究,” 2022.
[20]李輝煌, 田口方法品質設計的原理與實務, 高立圖書有限公司. 2020.
[21]A. Husnu Bademlioglu, O. Bedrettin Karatas, K. Furkan Sokmen, and E. Yuruklu, “Thermal management and fin characteristic optimization of an electronic power supply utilizing Taguchi and ANOVA methods,” Appl Therm Eng, vol. 252, p. 123671, Sep. 2024, doi: 10.1016/J.APPLTHERMALENG.2024.123671.
[22]A. S. Canbolat, A. H. Bademlioglu, and O. Kaynakli, “Thermohydraulic Performance Optimization of Automobile Radiators Using Statistical Approaches,” J Therm Sci Eng Appl, vol. 14, no. 5, May 2022, doi: 10.1115/1.4052853/1122926.
[23]“https://www.camprocnc.com/tw/products/5-axis-machining-center/nu-series/nu-400c,” 凱柏精密機械股份有限公司.
[24]“台灣快密刀科技有限公司官方網站,” FIMITECH. Accessed: Jun. 26, 2024. [Online]. Available: https://www.fimitech.com.tw/zh-tw/products/bechem-water-soluble-cutting-oil
[25]“https://www.spindlemaker.com/product_detal.php?pid=5&id=7,” 旭泰精密機械股份有限公司.
[26]“https://www.keyence.com.tw/products/microscope/digital-microscope/vhx-5000/models/vhx-5000/,” 台灣基恩斯股份有限公司.
[27]“https://www.keyence.com.tw/products/measure/laser-1d/lk-g5000/models/lk-h008/,” 台灣基恩斯股份有限公司.
[28]“https://www.kistler.com.cn/CN/zh/cp/multicomponent-dynamometers-9257b/P0000675,” 奇石樂集團.
[29]“https://www.eftec.com.tw/product/cwb-554av-cnc/,” 儀豐貿易股份有限公司.
[30]“https://www.jeolbenelux.com/JEOL-BV-News/jsm-7100f-thermal-field-emission-electron-microscope,” JEOL Benelux - Supplier of Electron Microscopes.
電子全文 電子全文(網際網路公開日期:20290805)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top