|
網路部分 Canadian Institute for Cybersecurity. CIC-MalMem-2022 Datasets. Available: https://www.unb.ca/cic/datasets/malmem-2022.html iThome (2023)。Fortinet 報告:2023 年上半年台灣平均每秒遭攻擊近 1.5 萬次,居亞太之冠。檢索日期:2023年12月19日。取自:https://www.ithome.com.tw/pr/158375 iThome (2024)。鴻海旗下的半導體設備廠京鼎網頁遭到竄改,駭客聲稱竊得該公司5 TB內部資料。檢索日期:2024年1月18日。取自:https://www.ithome.com.tw/news/160856 TechNews科技新報 (2023)。ChatGPT 可快速「量產」超危險惡意軟體,任何人都能發動國家級駭客攻擊。檢索日期:2023年6月19日。取自:https://technews.tw/2023/04/18/ai-created-malware-sends-shockwaves-through-cybersecurity-world/ TechNews科技新報 (2023)。駭客竊取 160GB 資料高價出售,宏碁證實資料外洩(更新)。檢索日期:2023年6月19日。取自:https://technews.tw/2023/03/08/acer-confirms-breach-after-160gb-of-data-for-sale-on-hacking-forum/
英文部分 Abdullah, M. A., Yu, Y., Adu, K., Imrana, Y., Wang, X., & Cai, J. (2023). HCL-Classifier: CNN and LSTM based hybrid malware classifier for Internet of Things (IoT). Future Generation Computer Systems, 142, 41-58. Ahmed, H. A., Hameed, A., & Bawany, N. Z. (2022). Network intrusion detection using oversampling technique and machine learning algorithms. PeerJ Computer Science, 8, e820. Akgun, D., Hizal, S., & Cavusoglu, U. (2022). A new DDoS attacks intrusion detection model based on deep learning for cybersecurity. Computers & Security, 118, 102748. Al-Fawa'reh, M., Al-Fayoumi, M., Nashwan, S., & Fraihat, S. (2022). Cyber threat intelligence using PCA-DNN model to detect abnormal network behavior. Egyptian Informatics Journal, 23(2), 173-185. Alani, M. M., Mashatan, A., & Miri, A. (2023). XMal: A lightweight memory-based explainable obfuscated-malware detector. Computers & Security, 133, 103409. Almahmoud, M., Alzu’bi, D., & Yaseen, Q. (2021). ReDroidDet: android malware detection based on recurrent neural network. Procedia Computer Science, 184, 841-846. Alsaif, S. A. (2023). Machine Learning-Based Ransomware Classification of Bitcoin Transactions. Applied Computational Intelligence and Soft Computing, 2023. Alshra’a, A. S., Farhat, A., & Seitz, J. (2021). Deep learning algorithms for detecting denial of service attacks in software-defined networks. Procedia Computer Science, 191, 254-263. Andrade, E. D. O., Viterbo, J., Vasconcelos, C. N., Guérin, J., & Bernardini, F. C. (2019). A model based on LSTM neural networks to identify five different types of malware. Procedia Computer Science, 159, 182-191. Aydın, H., Orman, Z., & Aydın, M. A. (2022). A long short-term memory (LSTM)-based distributed denial of service (DDoS) detection and defense system design in public cloud network environment. Computers & Security, 118, 102725. Banaamah, A. M., & Ahmad, I. (2022). Intrusion Detection in IoT Using Deep Learning. Sensors, 22(21), 8417. Benkerroum, S., & Chougdali, K. (2023, December). Enhancing Forensic Analysis Using a Machine Learning-based Approach. In 2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet) (pp. 1-6). IEEE. Bhat, P., & Dutta, K. (2022). A multi-tiered feature selection model for android malware detection based on Feature discrimination and Information Gain. Journal of King Saud University-Computer and Information Sciences, 34(10), 9464-9477. Bojarajulu, B., Tanwar, S., & Singh, T. P. (2023). Intelligent IoT-BOTNET attack detection model with optimized hybrid classification model. Computers & Security, 126, 103064. Brown, A., Gupta, M., & Abdelsalam, M. (2024). Automated machine learning for deep learning based malware detection. Computers & Security, 137, 103582. Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70-79. Carrier, T., Victor, P., Tekeoglu, A., & Lashkari, A. H. (2022, February). Detecting Obfuscated Malware using Memory Feature Engineering. In Icissp (pp. 177-188). Castillo, A., Lineses, A. B., Go, B., Labanan, R., & Octaviano, M. (2022, December). Trojan Malware Detection using ANN, Naïve Bayes and SVM Machine Learning Algorithms. In 2022 2nd International Conference in Information and Computing Research (iCORE) (pp. 72-76). IEEE. Chen, A., Fu, Y., Zheng, X., & Lu, G. (2022). An efficient network behavior anomaly detection using a hybrid DBN-LSTM network. Computers & Security, 114, 102600. Chen, Y., Bai, M., Zhang, Y., Liu, J., & Yu, D. (2023). Proactively selection of input variables based on information gain factors for deep learning models in short-term solar irradiance forecasting. Energy, 284, 129261. Cil, A. E., Yildiz, K., & Buldu, A. (2021). Detection of DDoS attacks with feed forward based deep neural network model. Expert Systems with Applications, 169, 114520. Dabas, N., & Sharma, P. (2023). MalAnalyser: An effective and efficient Windows malware detection method based on API call sequences. Expert Systems with Applications, 230, 120756. Dener, M., Ok, G., & Orman, A. (2022). Malware detection using memory analysis data in big data environment. Applied Sciences, 12(17), 8604. Dey, A. K., Gupta, G. P., & Sahu, S. P. (2023). A metaheuristic-based ensemble feature selection framework for cyber threat detection in IoT-enabled networks. Decision Analytics Journal, 7, 100206. Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems, 82, 761-768. Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022). Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing. Dutta, N., Jadav, N., Tanwar, S., Sarma, H. K. D., Pricop, E., Dutta, N., ... & Pricop, E. (2022). Introduction to malware analysis. Cyber Security: Issues and Current Trends, 129-141. Elmasry, W., Akbulut, A., & Zaim, A. H. (2020). Evolving deep learning architectures for network intrusion detection using a double PSO metaheuristic. Computer Networks, 168, 107042. Falana, O. J., Sodiya, A. S., Onashoga, S. A., & Badmus, B. S. (2022). Mal-Detect: An intelligent visualization approach for malware detection. Journal of King Saud University-Computer and Information Sciences, 34(5), 1968-1983. Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874. Fiza, S., Kumar, A. K., Devi, V. S., Kumar, C. N., & Kubra, A. (2023). Improved chimp optimization algorithm (ICOA) feature selection and deep neural network framework for internet of things (IOT) based android malware detection. Measurement: Sensors, 100785. Fu, Z. (2022). Computer network intrusion anomaly detection with recurrent neural network. Mobile Information Systems, 2022. Gao, X., Hu, C., Shan, C., & Han, W. (2022). MaliCage: A packed malware family classification framework based on DNN and GAN. Journal of Information Security and Applications, 68, 103267. Gaur, A., Singh, A., Nautiyal, A., Kothari, G., Mishra, P., & Jha, A. (2023, February). DeepHyperv: A deep neural network based virtual memory analysis for malware detection at hypervisor-layer. In 2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS) (pp. 1-6). IEEE. Gibert, D., Mateu, C., & Planes, J. (2020). The rise of machine learning for detection and classification of malware: Research developments, trends and challenges. Journal of Network and Computer Applications, 153, 102526. Gopinath, M., & Sethuraman, S. C. (2023). A comprehensive survey on deep learning based malware detection techniques. Computer Science Review, 47, 100529. Hajisalem, V., & Babaie, S. (2018). A hybrid intrusion detection system based on ABC-AFS algorithm for misuse and anomaly detection. Computer Networks, 136, 37-50. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. Imrana, Y., Xiang, Y., Ali, L., & Abdul-Rauf, Z. (2021). A bidirectional LSTM deep learning approach for intrusion detection. Expert Systems with Applications, 185, 115524. Kasongo, S. M. (2023). A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework. Computer Communications, 199, 113-125. Khan, A. R., Yasin, A., Usman, S. M., Hussain, S., Khalid, S., & Ullah, S. S. (2022). Exploring Lightweight Deep Learning Solution for Malware Detection in IoT Constraint Environment. Electronics, 11(24), 4147. Khan, L. P. (2023, February). Obfuscated Malware Detection Using Artificial Neural Network (ANN). In 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp. 1-5). IEEE. Kim, J. Y., & Cho, S. B. (2022). Obfuscated malware detection using deep generative model based on global/local features. Computers & Security, 112, 102501. Kumar, D., Pateriya, R. K., Gupta, R. K., Dehalwar, V., & Sharma, A. (2023). DDoS Detection using Deep Learning. Procedia Computer Science, 218, 2420-2429. Kumar, P. S., Mishra, I., Shitharth, S., & Tripathi, D. R. (2022, October). Malware Detection Classification using Recurrent Neural Network. In 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS) (pp. 876-880). IEEE. Lampe, B., & Meng, W. (2023). A survey of deep learning-based intrusion detection in automotive applications. Expert Systems with Applications, 119771. Landman, T., & Nissim, N. (2021). Deep-Hook: A trusted deep learning-based framework for unknown malware detection and classification in Linux cloud environments. Neural Networks, 144, 648-685. Liu, X., Lin, Y., Li, H., & Zhang, J. (2020). A novel method for malware detection on ML-based visualization technique. Computers & Security, 89, 101682. Lopes, I. O., Zou, D., Abdulqadder, I. H., Ruambo, F. A., Yuan, B., & Jin, H. (2022). Effective network intrusion detection via representation learning: A Denoising AutoEncoder approach. Computer Communications, 194, 55-65. Louk, M. H. L., & Tama, B. A. (2022). Tree-based classifier ensembles for PE malware analysis: A performance revisit. Algorithms, 15(9), 332. Manavi, F., & Hamzeh, A. (2021, March). Static detection of ransomware using LSTM network and PE header. In 2021 26th International Computer Conference, Computer Society of Iran (CSICC) (pp. 1-5). IEEE. Maniriho, P., Mahmood, A. N., & Chowdhury, M. J. M. (2022). A study on malicious software behaviour analysis and detection techniques: Taxonomy, current trends and challenges. Future Generation Computer Systems, 130, 1-18. Maniriho, P., Mahmood, A. N., & Chowdhury, M. J. M. (2023). A systematic literature review on windows malware detection: Techniques, research issues, and future directions. Journal of Systems and Software, 111921. Maniriho, P., Mahmood, A. N., & Chowdhury, M. J. M. (2023). API-MalDetect: Automated malware detection framework for windows based on API calls and deep learning techniques. Journal of Network and Computer Applications, 218, 103704. Miranda-García, A., Rego, A. Z., Pastor-López, I., Sanz, B., Tellaeche, A., Gaviria, J., & Bringas, P. G. (2024). Deep learning applications on cybersecurity: A practical approach. Neurocomputing, 563, 126904. Motylinski, M., MacDermott, Á., Iqbal, F., & Shah, B. (2022). A GPU-based machine learning approach for detection of botnet attacks. Computers & Security, 123, 102918. Naeem, H., Dong, S., Falana, O. J., & Ullah, F. (2023). Development of a deep stacked ensemble with process based volatile memory forensics for platform independent malware detection and classification. Expert Systems with Applications, 223, 119952. Naeem, H., Ullah, F., Naeem, M. R., Khalid, S., Vasan, D., Jabbar, S., & Saeed, S. (2020). Malware detection in industrial internet of things based on hybrid image visualization and deep learning model. Ad Hoc Networks, 105, 102154. Nazir, A., & Khan, R. A. (2021). A novel combinatorial optimization based feature selection method for network intrusion detection. Computers & Security, 102, 102164. Pooja, T. S., & Shrinivasacharya, P. (2021). Evaluating neural networks using Bi-Directional LSTM for network IDS (intrusion detection systems) in cyber security. Global Transitions Proceedings, 2(2), 448-454. Prazeres, N., Costa, R. L. D. C., Santos, L., & Rabadão, C. (2023). Engineering the application of machine learning in an IDS based on IoT traffic flow. Intelligent Systems with Applications, 17, 200189. Qiang, W., Yang, L., & Jin, H. (2022). Efficient and robust malware detection based on control flow traces using deep neural networks. Computers & Security, 102871. Rahadian, H., Bandong, S., Widyotriatmo, A., & Joelianto, E. (2023). Image encoding selection based on Pearson correlation coefficient for time series anomaly detection. Alexandria Engineering Journal, 82, 304-322. RM, S. P., Maddikunta, P. K. R., Parimala, M., Koppu, S., Gadekallu, T. R., Chowdhary, C. L., & Alazab, M. (2020). An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture. Computer Communications, 160, 139-149. Roy, K. S., Ahmed, T., Udas, P. B., Karim, M. E., & Majumdar, S. (2023). MalHyStack: A hybrid stacked ensemble learning framework with feature engineering schemes for obfuscated malware analysis. Intelligent Systems with Applications, 20, 200283. Shaukat, K., Luo, S., & Varadharajan, V. (2023). A novel deep learning-based approach for malware detection. Engineering Applications of Artificial Intelligence, 122, 106030. Smmarwar, S. K., Gupta, G. P., & Kumar, S. (2023). AI-empowered malware detection system for industrial internet of things. Computers and Electrical Engineering, 108, 108731. Song, Y. (2023). Public cloud network intrusion and internet legal supervision based on abnormal feature detection. Computers and Electrical Engineering, 112, 109015. Sowmya, T., & Anita, E. M. (2023). A comprehensive review of AI based intrusion detection system. Measurement: Sensors, 100827. Susilo, B., & Sari, R. F. (2020). Intrusion detection in IoT networks using deep learning algorithm. Information, 11(5), 279. Syed, N. F., Ge, M., & Baig, Z. (2023). Fog-cloud based intrusion detection system using Recurrent Neural Networks and feature selection for IoT networks. Computer Networks, 225, 109662. Szandała, T. (2021). Review and comparison of commonly used activation functions for deep neural networks. Bio-inspired neurocomputing, 203-224. Tayyab, U. E. H., Khan, F. B., Durad, M. H., Khan, A., & Lee, Y. S. (2022). A survey of the recent trends in deep learning based malware detection. Journal of Cybersecurity and Privacy, 2(4), 800-829. Thirimanne, S. P., Jayawardana, L., Yasakethu, L., Liyanaarachchi, P., & Hewage, C. (2022). Deep neural network based real-time intrusion detection system. SN Computer Science, 3(2), 145. Tian, D., Ying, Q., Jia, X., Ma, R., Hu, C., & Liu, W. (2021). MDCHD: A novel malware detection method in cloud using hardware trace and deep learning. Computer Networks, 198, 108394. Verma, V., Muttoo, S. K., & Singh, V. B. (2020). Multiclass malware classification via first-and second-order texture statistics. Computers & Security, 97, 101895. Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., & Venkatraman, S. (2019). Robust intelligent malware detection using deep learning. IEEE access, 7, 46717-46738. Vinayakumar, R., & Soman, K. P. (2018). DeepMalNet: evaluating shallow and deep networks for static PE malware detection. ICT express, 4(4), 255-258. Woo, J. H., Song, J. Y., & Choi, Y. J. (2019, February). Performance enhancement of deep neural network using feature selection and preprocessing for intrusion detection. In 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 415-417). IEEE. Yadav, R., Sreedevi, I., & Gupta, D. (2023). Augmentation in performance and security of WSNs for IoT applications using feature selection and classification techniques. Alexandria Engineering Journal, 65, 461-473. Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. Ieee Access, 5, 21954-21961. Yin, Y., Jang-Jaccard, J., Xu, W., Singh, A., Zhu, J., Sabrina, F., & Kwak, J. (2023). IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset. Journal of Big Data, 10(1), 1-26. Zhang, T., Chen, W., Liu, Y., & Wu, L. (2023). An intrusion detection method based on stacked sparse autoencoder and improved gaussian mixture model. Computers & Security, 128, 103144.
|