跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘奕佐
研究生(外文):Pan, Yi-Tso
論文名稱:透過高速飛靶撞擊石英產生至少4 GPa衝擊壓力之研究
論文名稱(外文):Generation of Shock Pressure of at Least 4 GPa through a High-Speed Flyer Plate impacting on Quartz
指導教授:張博宇
指導教授(外文):Chang, Po-Yu
口試委員:龔慧貞劉耀澧張博宇
口試日期:2024-01-10
學位類別:碩士
校院名稱:國立成功大學
系所名稱:太空與電漿科學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:95
中文關鍵詞:飛靶震波脈衝功率系統拉曼光譜
外文關鍵詞:Flyer plateShock wavePulsed-power systemRaman spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在開發飛靶發射器以加速飛靶至高速,作為動態高壓源。當飛靶撞擊樣品表面 時產生向樣品內部傳遞的高壓,材料在震波傳遞的過程中會被壓縮到高壓的狀態。本論文 的實驗包含兩個部分,第一部分為飛靶發射器之建置,並進行了飛靶發射實驗,以研究在 高真空和一般大氣環境中飛靶飛行行為的差異。飛靶發射器由脈衝功率系統來驅動,以20 mm×10 mm×15 µm的鋁箔作為飛靶。脈衝功率系統短路放電的峰值電流為∼100 kA,電流 的上升時間∼1.6 µs。透過電流模擬磁場,得到的最大磁場為8.5 T,進而計算得到飛靶所受 的最大磁壓為28 MPa。估算結果表明,在脈衝電流峰值時(∼1.6 µs),飛靶的速度可以超 過1 km/s。接著,我們利用脈寬為5 ns的Q-switch脈衝雷射進行側向量測,通過分析飛靶在 不同時間點的飛行位置來獲得其平均速度。結果顯示,在高真空環境中,飛靶的平均速度 為1.8±0.3 km/s,明顯低於一般大氣環境中飛靶的6.3±0.1 km/s。我們推測在一般大氣環境 中,我們觀測到的飛行物體並非是鋁箔,而是位於飛靶表面周圍被脈衝電流跳火而游離後的 大氣電漿。第二部分是飛靶撞擊石英的實驗,旨在通過拉曼光譜測量被撞擊後的石英量測受 到震波高壓後晶格結構的變化,以獲得撞擊的壓力和溫度範圍。實驗同樣在高真空中和一般 大氣環境中進行。結果顯示在不同環境下受撞擊的石英呈現明顯不同的外觀。然而,拉曼量 測結果顯示,不管在哪一個環境中進行實驗,受撞擊的石英內部(深度約為100 µm)都可觀察 到柯石英相(Coesite)的訊號,顯示高速飛靶撞擊石英後產生的壓力和溫度達到柯石英相的範 圍。此外,石英受撞擊後表面拉曼量測的結果顯示出非晶質相的訊號,意即石英被撞擊處曾 經變為液態相。綜合柯石英相及液態相的訊息,代表石英被撞擊後,相變至柯石英相與液態 相的交界處。意即在高真空環境中與一般大氣環境中進行撞擊實驗時,高速飛靶的撞擊在樣 品中所產生的壓力皆至少4 GPa,且溫度均超過2400 °C。最後,我們透過與其他研究的比 較,我們相信在我們研究中的衝擊壓力至少達到了 23 GPa。
In this thesis, we developed the Flyer-Plate-Launcher to accelerate the flyer plate to a high speed, serving as a dynamic high-pressure source. When the flyer plate impacts the surface of the sample, it generates a shock propagating into the sample. The material will be compressed to a high-pressure state during the propagation of the shock wave. The experiment of this thesis consists of two parts. In the first part, we focused on the building of the FlyerPlate-Launcher. Then, we conducted flyer-plate launch experiments to study the difference in flying behaviors of the flyer plate in the high-vacuum and atmospheric environments. The Flyer-Plate-Launcher is driven by the pulsed-power system. The peak current of the shortcircuit discharge in the pulsed-power system is ∼100 kA, with a rise time of ∼1.6 µs. We used the 20 mm×10 mm×15 µm aluminum foil as the flyer plate. Through the simulation of the magnetic field using the current provided by the pulsed-power system, the maximum magnetic field is 8.5 T. The corresponding maximum magnetic pressure on the flyer plate is 28 MPa. The estimation indicated that the velocity of the flyer plate exceeded 1 km/s at the peak of the pulsed current (∼1.6 µs). Next, we used a Q-switch laser with a pulse width of 5 ns for taking images of the Flyer-Plate Launcher from the side. We obtained the average velocity by analyzing the fly-out distance of the flyer plate at different times. Results showed that in the high-vacuum environment, the average velocity of the flyer plate is 1.8±0.3 km/s, which is significantly lower than the 6.3±0.1 km/s of the flyer plate launched in the atmospheric environment. We speculated that in the atmospheric environment, the flying object we observed was not aluminum foil. Instead, it was the atmospheric plasma formed around the surface of the flyer plate due to the pulsed current flashover on the surface of the flyer plate. The second part is the experiment in which a flyer plate impacts a Quartz sample. The objective is to measure changes in the lattice structure of Quartz after the impact using Raman spectroscopy. This experimental approach provides information on the pressure and temperature induced by the impact. The experiments were also conducted in the high-vacuum and atmospheric environments. However, Raman measurements showed signals of Coesite underneath the surface of the impacted Quartz (at a depth of ∼100 µm) in both environments. This indicated that the pressure and temperature resulting from the impact by the high-speed flyer plate reached the range of Coesite. Furthermore, the results of Raman measurements on the surface of impacted Quartz showed signals of an amorphous phase. This suggested that the Quartz was briefly turned into a Liquid phase through the impact. Therefore, the sample state was in the boundary between the Coesite phase and Liquid phase. It showed that the impact pressure in Quartz exceeded 4 GPa and the temperature was at least 2400 °C in both high-vacuum and atmospheric environments. Finally, through a comparison with other research allows us to believe that the impact pressure in our study reached at least 23 GPa.
1 Introduction 1
1.1 Flyer-Plate Launcher 2
1.1.1 The laser-driven Flyer-Plate Launcher 2
1.1.2 The magnetically driven Flyer-Plate Launcher 2
1.2 Motivation of developing the Flyer-Plate Launcher 3
1.3 The goal of this thesis 5
2 Experimental platform and diagnostics 6
2.1 The pulsed-power system 6
2.2 Diagnostics 7
2.2.1 Rogowski coil 7
2.2.2 Laser-camera system 10
3 Flyer-Plate Launcher (FPL) 13
3.1 Principle of the Flyer-Plate Launcher 13
3.2 Simulation of the magnetic field 15
3.3 Estimation of the velocity of the flyer plate 17
3.4 The design of the Flyer-Plate Launcher 18
4 Characterizing of flyer plates 22
4.1 Experimental setup 22
4.1.1 Flyer plate setup 22
4.1.2 Diagnostics 23
4.2 The launch experiment in the high-vacuum environment 23
4.3 The launch experiment in the atmospheric environment 25
4.4 Retrieving flyer-plate velocities under different environmental conditions 28
4.5 Discussions 35
4.5.1 Velocities of flyer plates under different environmental conditions 35
4.5.2 Flyer-plate density estimation 36
4.5.3 Skin depth of the plasma 37
4.6 Summary 37
5 Quartz impact experiment 39
5.1 Raman spectroscopy 40
5.2 Experimental setup 41
5.3 Appearances of impacted Quartz 44
5.4 Results of Raman shift on the surface 46
5.5 Raman shift of Quartz at different focusing depths 47
5.6 Discussion 51
5.7 Summary 52
6 Future work 54
7 Summary 55
References 56
A Appendix 58
A.1 附錄細項 58
A.2 The engineering drawing of the Flyer-Plate Launcher 58
A.3 Shadowgraph images of flyer plates in the high-vacuum environment 69
A.4 Shadowgraph images of flyer plates in the atmospheric environment 71
A.5 The conversion ratio and the average distance of the flyer plate in the highvacuum
environment 74
A.6 The conversion ratio and the average distance of the flyer plate in the atmospheric
environment 75
A.7 Results of Raman shift on the surface in the high-vacuum environment 76
A.8 Results of Raman shift on the surface in the atmospheric environment 79
A.9 Raman shift of Quartz at different focusing depths in the high-vacuum environment 80
A.10 Raman shift of Quartz at different focusing depths in the atmospheric environment 81
A.11 The vender 81
first light. Projectile fusion. https://firstlightfusion.com/technology/our-approach, 2022.
Kathryn E. Brown, William L. Shaw, Xianxu Zheng, and Dana D. Dlott. Simplified laser-driven flyer plates for shock compression science. Review of Scientific Instruments, 83(10), October 2012.
Pulsed-Plasma Laboratory. Pulsed-power system in ncku. https://capst.ncku.edu.tw/PGS/index.php/pulsed-power-generator/.
Po-Yu Chang. Laser probing. https://capst.ncku.edu.tw/PGS/index.php/laser-probing/, 2022.
Dexter Perkins and John Brady. Phase diagrams (and pseudosections) for petrologists. https://serc.carleton.edu/researcheducation/equilibria/simplephasediagrams.html.
Tania Dey. Microplastic pollutant detection by surface enhanced raman spectroscopy (sers): a mini-review. Nanotechnology for Environmental Engineering, 8(1):41–48, February 2022.
T. de Ress´eguier, P. Berterretche, M. Hallouin, and J. P. Petitet. Structural transformations in laser shock-loaded quartz. Journal of Applied Physics, 94(3):2123–2129, July 2003.
firstlight. The world’s leading inertial fusion company-first light. https://firstlightfusion.com/, 2011.
C.A. Hall, M.D. Knudson, J.R. Asay, R. Lemke, and B. Oliver. High velocity flyer plate launch capability on the sandia z accelerator. International Journal of Impact Engineering, 26(1–10):275–287, December 2001.
M. D. Knudson. Megaamps, megagauss, and megabars: Using the sandia z machine to perform extreme material dynamics experiments. In AIP Conference Proceedings. AIP, 2012.
Guiji Wang, Binqiang Luo, Xuping Zhang, Jianheng Zhao, Chengwei Sun, Fuli Tan, Tao Chong, Jianjun Mo, Gang Wu, and Yanhui Tao. A 4 ma, 500 ns pulsed power generator cq4 for characterization of material behaviors under ramp wave loading. Review of Scientific Instruments, 84(1), January 2013.
Xuemiao Chen, Binqiang Luo, Xuping Zhang, Guiji Wang, Fuli Tan, Rongjie Shui, Chao Xu, Gang Wu, Xiao Ma, Jianheng Zhao, Cangli Liu, Chengwei Sun, and Linwen Zhang. A compact pulsed power driver with precisely shaped current waveforms for magnetically driven loading experiments. Review of Scientific Instruments, 93(8), August 2022.
Po-Yu Chang, Yen-Cheng Lin, Ming-Hsiang Kuo, Cheng-Han Du, Chih-Jui Hsieh, MeiFeng Huang, Ming-Cheng Jheng, Jia-Kai Liu, Sheng-Hua Yang, I-Lin Yeh, and Frank J. Wessel. One-kilojoule pulsed-power generator for laboratory space sciences. Review of Scientific Instruments, 93(4), April 2022.
Jia-Kai Liu. Study of the gas puff in the euv light source using a theta pinch. 2022.
COMSOL. Simulate real-world designs, devices, and processes with multiphysics software from comsol. https://www.comsol.com/.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top