跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳思翰
研究生(外文):Chen, Szu-han
論文名稱:經由脂肪幹細胞來調控神經發炎治療壓迫性周邊神經病變
論文名稱(外文):Adipose-derived stem cells modulate neuroinflammation and improve functional recovery of rodent sciatic compressive neuropathy
指導教授:薛元毓吳佳慶吳佳慶引用關係蔡坤哲蔡坤哲引用關係
指導教授(外文):Hsueh, Yuan-YuWu, Chia-ChingTsai, Kuen-Jer
口試委員:蔡坤哲薛元毓吳佳慶林宙晴江伯敏黃書鴻劉彥青鄭乃禎
口試委員(外文):Tsai, Kuen-JerHsueh, Yuan-YuWu, -ChingLin, Chou-ChingChiang, Po-MinHuang, Shu-HungLiu, Yen-ChinCheng, Nai-Chen
口試日期:2023-12-08
學位類別:博士
校院名稱:國立成功大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:英文
論文頁數:78
中文關鍵詞:脂肪幹細胞神經炎症壓迫性神經病變慢性壓迫性損傷神經痛
外文關鍵詞:adipose-derived stem cellsneuroinflammationcompressive neuropathychronic constriction injuryneuropathic pain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
慢性壓迫性神經病變是一種常見的周邊神經創傷性損傷,可導致不同程度的感覺和運動功能障礙。即使在接受減壓後,患者也可能繼續遭受神經痛和肌肉萎縮的困擾。這是由於免疫細胞浸潤並在受傷的神經內引起過度的神經炎症,從而阻礙神經再生和功能恢復。然而,脂肪幹細胞已顯示出神經再生和免疫調節的潛力,本研究旨在研究它們對壓迫性神經病變的治療益處。
為了研究這一點,使用改良的慢性壓迫性周邊神經損傷模型在成年雄性大鼠中產生不可逆的神經性疼痛和肌肉萎縮。 然後將脂肪幹細胞注入受壓神經並結合手術減壓。治療後,進行行為分析、肌肉檢查和電生理學評估,以評估功能恢復情況。也對受傷神經和相關背根神經節進行了免疫螢光研究,以探索局部和遠端軸突再生和神經發炎的調節。 對移植的脂肪幹細胞進行跟踪,以探索局部神經和背根神經節發炎基因表現的潛在機制和調節。
結果表明,脂肪幹細胞有利於治療不可逆慢性壓迫性周邊神經損傷模型,因為它們可以減輕機械異常疼痛,改善步態功能,再生肌纖維,並促進軸突髓鞘再生。移植的脂肪幹細胞還減輕了神經發炎並減少了受損神經和背根神經節中的發炎細胞浸潤。儘管移植的脂肪幹細胞保留活力和表型的時間不到 7 天,但它們對受損神經和背根神經節中發炎基因表現的強大免疫調節作用做出了貢獻。這表明脂肪幹細胞局部治療對壓迫性神經病變具有有效的旁分泌影響。
總之,局部移植的脂肪幹細胞治療可以透過減輕局部和遠端神經發炎來改善大鼠坐骨神經不可逆慢性收縮損傷的感覺和運動恢復。這一結果表明脂肪幹細胞療法在臨床壓迫性神經病變中具有廣闊的前景。
Chronic compressive neuropathy is a common traumatic injury to peripheral erves that can result in varying degrees of sensory and motor function impairments. Even after undergoing decompression, patients may continue to suffer from europathic pain and muscle atrophy. This is due to immune cells infiltrating and causing excessive neuroinflammation within the injured nerve, which impedes nerve regeneration and functional recovery. However, adipose-derived stem cells (ASCs) have shown potential for nerve regeneration and immunomodulation, and this study aims to investigate their therapeutic benefits for compressive neuropathy.
To investigate this, modified chronic constriction injury (CCI) models were used to create irreversible neuropathic pain and muscle atrophy in adult male rats. ASCs were then injected into the compressive nerve combined with surgical decompression. After treatment, behavioral analysis, muscle examination, and electrophysiological evaluation were conducted to assess functional recoveries. Immunofluorescent studies of the injured nerve and associated dorsal root ganglion (DRG) were also investigated to explore the regulation of local and remote nerve regeneration and neuroinflammation. The transplanted ASCs were tracked to explore the potential mechanisms and modulation of inflammatory gene expression on the local nerve and DRG.
Results showed that ASCs were beneficial in treating the irreversible CCI model, as they alleviated mechanical allodynia, improved gait function, regenerated muscle fiber, and facilitated nerve remyelination. The transplanted ASCs also alleviated neuroinflammation and reduced inflammatory cell infiltration among the injured nerve and DRG. Although the transplanted ASCs preserved viability and phenotype for less than 7 days, they contributed to robust immunomodulatory regulation of inflammatory gene expression in both the injured nerve and DRG. This suggests the potent paracrine influence of ASC local treatment on compressive neuropathy.
In conclusion, locally transplanted ASCs can improve sensory and motor recoveries from irreversible chronic constriction injury of rat sciatic nerve by alleviating both local and remote neuroinflammation. This result suggests adjuvant ASC therapies' promising role in clinical compressive neuropathy.
中文摘要3
English Abstract 5
致謝7
Table of contents 8
List of Tables 11
List of Figures 12
Abbreviations 14
Chapter 1 Introduction 15
1.1 peripheral nerve injury and clinical management 15
1.1.1 peripheral nerve injury classification and recovery potential 15
1.1.2 Unsatisfactory outcomes of peripheral compressive neuropathy after surgery 18
1.1.3 Non-surgical treatment for peripheral compressive neuropathy 20
1.2 potential mechanisms of peripheral nerve injury 21
1.2.1 pathophysiology of peripheral compressive neuropathy 21
1.2.2 Neuroinflammation was a key process in peripheral compressive neuropathy 23
1.3 Stem cell therapy for peripheral compressive neuropathy 25
1.3.1 Adipose derived stem cells (ASCs) may be a new therapeutic option for peripheral nerve regeneration 25
1.3.2 Therapeutic Mechanism of ASCs for peripheral nerve regeneration by Trans-Differentiation into SCs 25
1.4 Hypothesis and Specific aims 27
Chapter 2 Materials and Methods 28
2.1 Animals and surgical procedures 28
2.2 ASCs Isolation and Cell Culture 30
2.2.1 Flow cytometry analysis of the cultured ASCs 31
2.2.2 The tri-lineage differentiation of the cultured ASCs in vitro study 32
2.2.3 The ASCs labeling and tracing 33
2.3 The sensory assessment 34
2.4 The gait analysis for functional outcome evaluation 34
2.5 Electrophysiological assessment 35
2.6 Wet muscle ratio evaluation and histologic analysis 36
2.7 Immunofluorescent staining 36
2.8 Quantitative PCR of nerve and dorsal root ganglion 37
2.9 Statistical analysis 38
Chapter 3 Results 40
3.1 Adipose derived stem cells improved sensory and motor recoveries of peripheral compressive neuropathy 40
3.2 Adipose derived stem cells preserved innervated muscle mass and nhanced neuromuscular reinnervation 42
3.3 Adipose derived stem cells facilitate functional nerve regeneration and ameliorate neuroinflammation on compressive nerve 44
3.4 Adipose derived stem cells reduce pain neuropeptid and ameliorate neuroinflammatory signals in ipsilateral dorsal root ganglion 48
3.5 The terminal fate of transplanted adipose-derived stem cells on compressive nerve 51
3.6 Early immunomodulatory effects of transplanted adipose-derived stem cells on injured nerve and dorsal root ganglion 54
Chapter 4 Discussion 56
Chapter 5 Conclusions 64
Chapter 6 Future work 65
References 67
Thesis related publication 75
Non-thesis related publications 76
Grants 77
Author’s Curriculum vitae 78
1.Jobe, M. and M. SF, Canale & Beaty: Campbell's Operative Orthopaedics. ed: Elsevier Philadelphia, 2013.
2.Menorca, R.M., T.S. Fussell, and J.C. Elfar, Nerve physiology: mechanisms of injury and recovery. Hand Clin, 2013. 29(3): p. 317-30.
3.SEDDON, H.J., THREE TYPES OF NERVE INJURY. Brain, 1943. 66(4): p. 237-288.
4.Sunderland, S., A classification of peripheral nerve injuries producing loss of function. Brain, 1951. 74(4): p. 491-516.
5.Sulaiman, W. and T. Gordon, Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J, 2013. 13(1): p. 100-8.
6.Sulaiman, W.A. and D.G. Kline, Nerve surgery: a review and insights about its future. Clin Neurosurg, 2006. 53: p. 38-47.
7.Tham, S.K., et al., Reverse radial artery fascial flap: a treatment for the chronically carred median nerve in recurrent carpal tunnel syndrome. J Hand Surg Am, 1996. 21(5): p. 849-54.
8.Robertson, C. and J. Saratsiotis, A review of compressive ulnar neuropathy at the elbow. J Manipulative Physiol Ther, 2005. 28(5): p. 345.
9.Assmus, H., et al., Cubital tunnel syndrome - a review and management guidelines. Cent Eur Neurosurg, 2011. 72(2): p. 90-8.
10.Jones, N.F., H.C. Ahn, and S. Eo, Revision surgery for persistent and recurrent carpal tunnel syndrome and for failed carpal tunnel release. Plast Reconstr Surg, 2012. 129(3): p. 683-692.
11.Tang, P., J.S. Hoellwarth, and A. Chauhan, Recurrent Cubital Tunnel Syndrome: A Critical Analysis Review. JBJS Rev, 2016. 4(3).
12.Kulick, M.I., et al., Long-term analysis of patients having surgical treatment for carpal tunnel syndrome. J Hand Surg Am, 1986. 11(1): p. 59-66.
13.Concannon, M.J., M.L. Brownfield, and C.L. Puckett, The incidence of recurrence after endoscopic carpal tunnel release. Plast Reconstr Surg, 2000. 105(5): p. 1662-5.
14.Lowe, J.B. and S.E. Mackinnon, Management of Secondary Cubital Tunnel Syndrome. Plastic and Reconstructive Surgery, 2004. 113: p. e1-e16.
15.Dworkin, R.H., et al., Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol, 2003. 60(11): p. 1524-34.
16.Attal, N., Neuropathic pain: mechanisms, therapeutic approach, and interpretation of clinical trials. Continuum (Minneap Minn), 2012. 18(1): p. 161-75.
17.Baron, R., A. Binder, and G. Wasner, Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol, 2010. 9(8): p. 807-19.
18.Cruccu, G., et al., EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Neurol, 2007. 14(9): p. 952-70.
19.Hussain, G., et al., Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int J Biol Sci, 2020. 16(1): p. 116-134.
20.Gordon, T., N. Tyreman, and M.A. Raji, The basis for diminished functional recovery after delayed peripheral nerve repair. J Neurosci, 2011. 31(14): p. 5325-34.
21.Chen, S.H., et al., Investigation of Neuropathology after Nerve Release in Chronic Constriction Injury of Rat Sciatic Nerve. Int J Mol Sci, 2021. 22(9).
22.Schmid, A.B., et al., Local and remote immune-mediated inflammation after mild peripheral nerve compression in rats. J Neuropathol Exp Neurol, 2013. 72(7): p. 662-80.
23.Schmid, A.B., J. Fundaun, and B. Tampin, Entrapment neuropathies: a contemporary approach to pathophysiology, clinical assessment, and management. Pain Rep, 2020. 5(4): p. e829.
24.Burnett, M.G. and E.L. Zager, Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus, 2004. 16(5): p. E1.
25.Min, Q., D.B. Parkinson, and X.P. Dun, Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia, 2021. 69(2): p. 235-254.
26.Cattin, A.L., et al., Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell, 2015. 162(5): p. 1127-39.
27.Mackinnon, S.E., et al., A primate model for chronic nerve compression. J Reconstr Microsurg, 1985. 1(3): p. 185-95.
28.Scholz, J. and C.J. Woolf, The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci, 2007. 10(11): p. 1361-8.
29.Ellis, A. and D.L. Bennett, Neuroinflammation and the generation of neuropathic pain. Br J Anaesth, 2013. 111(1): p. 26-37.
30.Richner, M., et al., Functional and Structural Changes of the Blood-Nerve-Barrier in Diabetic Neuropathy. Front Neurosci, 2018. 12: p. 1038.
31.Mackinnon, S.E., Pathophysiology of nerve compression. Hand Clin, 2002. 18(2): p. 231-41.
32.Tofaris, G.K., et al., Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci, 2002. 22(15): p. 6696-703.
33.Sugiura, S., et al., Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. Eur J Neurosci, 2000. 12(2): p. 457-66.
34.Solomon, A., et al., Nerve growth factor is preformed in and activates human peripheral blood eosinophils. J Allergy Clin Immunol, 1998. 102(3): p. 454-60.
35.Sorkin, L.S., et al., Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience, 1997. 81(1): p. 255-62.
36.Okamoto, K., et al., Pro- and anti-inflammatory cytokine gene expression in rat sciatic nerve chronic constriction injury model of neuropathic pain. Exp Neurol, 2001. 169(2): p. 386-91.
37.Ellis, A. and D. Bennett, Neuroinflammation and the generation of neuropathic pain. British journal of anaesthesia, 2013. 111(1): p. 26-37.
38.Uccelli, A., L. Moretta, and V. Pistoia, Mesenchymal stem cells in health and disease. Nat Rev Immunol, 2008. 8(9): p. 726-36.
39.Kim, J. and P. Hematti, Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol, 2009. 37(12): p. 1445-53.
40.Ma, T., et al., MicroRNA-132, Delivered by Mesenchymal Stem Cell-Derived Exosomes, Promote Angiogenesis in Myocardial Infarction. Stem Cells Int, 2018. 2018: p. 3290372.
41.Regmi, S., et al., Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur J Cell Biol, 2019. 98(5-8): p. 151041.
42.Rhode, S.C., J.P. Beier, and T. Ruhl, Adipose tissue stem cells in peripheral nerve regeneration-In vitro and in vivo. J Neurosci Res, 2021. 99(2): p. 545-560.
43.Podsednik, A., R. Cabrejo, and J. Rosen, Adipose Tissue Uses in Peripheral Nerve Surgery. Int J Mol Sci, 2022. 23(2).
44.Jiang, L., et al., Augmenting Peripheral Nerve Regeneration with Adipose-Derived Stem Cells. Stem Cell Rev Rep, 2022. 18(2): p. 544-558.
45.Tomita, K., et al., Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience, 2013. 236: p. 55-65.
46.Sowa, Y., et al., Adipose-Derived Stem Cells Promote Peripheral Nerve Regeneration In Vivo without Differentiation into Schwann-Like Lineage. Plast Reconstr Surg, 2016. 137(2): p. 318e-330e.
47.Santiago, L.Y., et al., Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplant, 2009. 18(2): p. 145-58.
48.Marconi, S., et al., Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A, 2012. 18(11-12): p. 1264-72.
49.Zack-Williams, S.D., P.E. Butler, and D.M. Kalaskar, Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World J Stem Cells, 2015. 7(1): p. 51-64.
50.Wang, Y.H., et al., Adipose Stem Cell-Based Clinical Strategy for Neural Regeneration: A Review of Current Opinion. Stem Cells Int, 2019. 2019: p. 8502370.
51.Kim, D.Y., et al., In vivo effects of adipose-derived stem cells in inducing neuronal regeneration in Sprague-Dawley rats undergoing nerve defect bridged with polycaprolactone nanotubes. J Korean Med Sci, 2014. 29 Suppl 3(Suppl 3): p. S183-92.
52.Wilkins, A., et al., Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res, 2009. 3(1): p. 63-70.
53.Osugi, M., et al., Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A, 2012. 18(13-14): p. 1479-89.
54.Kingham, P.J., et al., Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol, 2007. 207(2): p. 267-74.
55.Kingham, P.J., et al., Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev, 2014. 23(7): p. 741-54.
56.Ochoa, J., et al., Nature of the nerve lesion caused by a pneumatic tourniquet. Nature, 1971. 233(5317): p. 265-6.
57.Chen, S.-H., et al., Controllable forces for reproducible chronic constriction injury mimicking compressive neuropathy in rat sciatic nerve. Journal of Neuroscience Methods, 2020. 335: p. 108615-108624.
58.Rodríguez Sánchez, D.N., et al., Canine Adipose-Derived Mesenchymal Stromal Cells Enhance Neuroregeneration in a Rat Model of Sciatic Nerve Crush Injury. Cell Transplant, 2019. 28(1): p. 47-54.
59.Zuk, P.A., et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001. 7(2): p. 211-28.
60.Hsueh, Y.Y., et al., Spheroid formation and neural induction in human adipose-derived stem cells on a chitosan-coated surface. Cells Tissues Organs, 2012. 196(2): p. 117-28.
61.Hsueh, Y.Y., et al., Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells. Biomaterials, 2014. 35(7): p. 2234-44.
62.Navarro, X. and E. Udina, Chapter 6: Methods and protocols in peripheral nerve regeneration experimental research: part III-electrophysiological evaluation. Int Rev Neurobiol, 2009. 87: p. 105-26.
63.Werdin, F., et al., An improved electrophysiological method to study peripheral nerve regeneration in rats. J Neurosci Methods, 2009. 182(1): p. 71-7.
64.Tabakow, P., et al., Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant, 2013. 22(9): p. 1591-612.
65.Squillaro, T., G. Peluso, and U. Galderisi, Clinical Trials With Mesenchymal Stem Cells: An Update. Cell Transplant, 2016. 25(5): p. 829-48.
66.Kubiak, C.A., et al., Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve, 2020. 61(4): p. 449-459.
67.De la Rosa, M.B., E.M. Kozik, and D.S. Sakaguchi, Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration. Adv Exp Med Biol, 2018. 1119: p. 41-71.
68.Krzesniak, N.E., et al., Secondary release of the peripheral nerve with autologous fat derivates benefits for functional and sensory recovery. Neural Regen Res, 2021. 16(5): p. 856-864.
69.Venturi, M., et al., Pudendal Neuralgia: A New Option for Treatment? Preliminary Results on Feasibility and Efficacy. Pain Med, 2015. 16(8): p. 1475-81.
70.Tomita, K., et al., Differentiated adipose-derived stem cells promote myelination and enhance functional recovery in a rat model of chronic denervation. J Neurosci Res, 2012. 90(7): p. 1392-402.
71.Liu, G., et al., Transplantation of adipose-derived stem cells for peripheral nerve repair. Int J Mol Med, 2011. 28(4): p. 565-72.
72.Liu, G.B., et al., Adipose-derived stem cells promote peripheral nerve repair. Arch Med Sci, 2011. 7(4): p. 592-6.
73.Vishnoi, T., et al., Chitosan-Gelatin-Polypyrrole Cryogel Matrix for Stem Cell Differentiation into Neural Lineage and Sciatic Nerve Regeneration in Peripheral Nerve Injury Model. ACS Biomater Sci Eng, 2019. 5(6): p. 3007-3021.
74.Zhou, L.N., et al., A comparison of the use of adipose-derived and bone marrow-derived stem cells for peripheral nerve regeneration in vitro and in vivo. Stem Cell Res Ther, 2020. 11(1): p. 153.
75.Wang, D., S. Wang, and C. Shi, Update on cancer related issues of mesenchymal stem cell-based therapies. Curr Stem Cell Res Ther, 2012. 7(5): p. 370-80.
76.Yañez, R., et al., Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells, 2006. 24(11): p. 2582-91.
77.Gonzalez-Rey, E., et al., Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis, 2010. 69(1): p. 241-8.
78.Premaratne, G.U., et al., Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role. J Cardiothorac Surg, 2011. 6: p. 43.
79.Franchi, S., et al., Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. Biomed Res Int, 2014. 2014: p. 470983.
80.Lee, H.Y., et al., Human Adipose Stem Cells Improve Mechanical Allodynia and Enhance Functional Recovery in a Rat Model of Neuropathic Pain. Tissue Eng Part A, 2015. 21(13-14): p. 2044-52.
81.Guo, J., et al., Stromal vascular fraction: A regenerative reality? Part 2: Mechanisms of regenerative action. J Plast Reconstr Aesthet Surg, 2016. 69(2): p. 180-8.
82.Zhang, L., et al., Use of immune modulation by human adipose-derived mesenchymal stem cells to treat experimental arthritis in mice. Am J Transl Res, 2017. 9(5): p. 2595-2607.
83.Dai, L.G., G.S. Huang, and S.H. Hsu, Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits. Cell Transplant, 2013. 22(11): p. 2029-39.
84.Ren, Z., et al., Role of stem cells in the regeneration and repair of peripheral nerves. Rev Neurosci, 2012. 23(2): p. 135-43.
85.Heo, J.S., Y. Choi, and H.O. Kim, Adipose-Derived Mesenchymal Stem Cells Promote M2 Macrophage Phenotype through Exosomes. Stem Cells Int, 2019. 2019: p. 7921760.
86.Gaudet, A.D., P.G. Popovich, and M.S. Ramer, Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation, 2011. 8: p. 110.
87.Shen, Z.L., et al., Cellular activity of resident macrophages during Wallerian degeneration. Microsurgery, 2000. 20(5): p. 255-61.
88.Mueller, M., et al., Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Lab Invest, 2003. 83(2): p. 175-85.
89.Griffin, J.W., R. George, and T. Ho, Macrophage systems in peripheral nerves. A review. J Neuropathol Exp Neurol, 1993. 52(6): p. 553-60.
90.Stevens, A.M., et al., Differential Expression of Neuroinflammatory mRNAs in the Rat Sciatic Nerve Following Chronic Constriction Injury and Pain-Relieving Nanoemulsion NSAID Delivery to Infiltrating Macrophages. Int J Mol Sci, 2019. 20(21).
91.Kiguchi, N., et al., Inhibition of peripheral macrophages by nicotinic acetylcholine receptor agonists suppresses spinal microglial activation and neuropathic pain in mice with peripheral nerve injury. J Neuroinflammation, 2018. 15(1): p. 96.
92.Lim, E.F., et al., Presence and activation of pro-inflammatory macrophages are associated with CRYAB expression in vitro and after peripheral nerve injury. J Neuroinflammation, 2021. 18(1): p. 82.
93.Martin, S.L., et al., Gene expression changes in dorsal root ganglia following peripheral nerve injury: roles in inflammation, cell death and nociception. Neural Regen Res, 2019. 14(6): p. 939-947.
94.Fregnan, F., et al., Role of inflammatory cytokines in peripheral nerve injury. Neural Regen Res, 2012. 7(29): p. 2259-66.
95.Fu, C., et al., Substance P and calcitonin gene-related peptide expression in dorsal root ganglia in sciatic nerve injury rats. Neural Regen Res, 2013. 8(33): p. 3124-30.
96.Woodley, P.K., et al., Distinct VIP and PACAP Functions in the Distal Nerve Stump During Peripheral Nerve Regeneration. Front Neurosci, 2019. 13: p. 1326.
97.Son, S.J., et al., Activation of transcription factor c-jun in dorsal root ganglia induces VIP and NPY upregulation and contributes to the pathogenesis of neuropathic pain. Exp Neurol, 2007. 204(1): p. 467-72.
98.Siniscalco, D., et al., Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci, 2011. 5: p. 79.
99.Sacerdote, P., et al., Systemic administration of human adipose-derived stem cells reverts nociceptive hypersensitivity in an experimental model of neuropathy. Stem Cells Dev, 2013. 22(8): p. 1252-63.
100.Vadivelu, S., et al., Potential role of stem cells for neuropathic pain disorders. Neurosurg Focus, 2013. 35(3): p. E11.
101.Nadeau, S., et al., Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. J Neurosci, 2011. 31(35): p. 12533-42.
102.Glaccum, M.B., et al., Phenotypic and functional characterization of mice that lack the type I receptor for IL-1. J Immunol, 1997. 159(7): p. 3364-71.
103.Rothe, J., et al., Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature, 1993. 364(6440): p. 798-802.
104.Ott, L.W., et al., Tumor Necrosis Factor-alpha- and interleukin-1-induced cellular responses: coupling proteomic and genomic information. J Proteome Res, 2007. 6(6): p. 2176-85.
105.Montani, C., et al., The X-Linked Intellectual Disability Protein IL1RAPL1 Regulates Dendrite Complexity. J Neurosci, 2017. 37(28): p. 6606-6627.
106.Bodnar, C.N., J.M. Morganti, and A.D. Bachstetter, Depression following a traumatic brain injury: uncovering cytokine dysregulation as a pathogenic mechanism. Neural Regen Res, 2018. 13(10): p. 1693-1704.
107.Bucan, V., et al., Effect of Exosomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration After Crush Injury. Mol Neurobiol, 2019. 56(3): p. 1812-1824.
108.Erba, P., et al., Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aesthet Surg, 2010. 63(12): p. e811-7.
109.Walsh, S.K., et al., Fate of stem cell transplants in peripheral nerves. Stem Cell Res, 2012. 8(2): p. 226-38.
110.Walsh, S. and R. Midha, Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurg Focus, 2009. 26(2): p. E2.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊