參考文獻
[1] 林子鈞,2020,以深度學習方法預測大型活動對臺北捷運運量之影響,國立臺灣大學地理環境資源學系,碩士論文,臺北市[2] 翁宇鴻,2022,應用手機信令預測捷運站間量之研究,國立中央大學土木工程學系,碩士論文,桃園市。[3] 陳惠國,2022,研究分析方法講義,國立中央大學土木工程學系,桃園市。
[4] Liu, L., Zhu, Y., Li, G., Wu, Z., Bai, L., and Lin, L., 2022, Online metro origin-destination prediction via heterogeneous information aggregation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3), 3574-3589.
[5] Vanajakshi, L., and Laurence R., 2007, Support vector machine technique for the short term prediction of travel time. IEEE Intelligent Vehicles Symposium, 600-605.
[6] Jeong, Y. S., Byon, Y. J., Manoel C. N., and Easa., 2013, Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems , 1700-1707.
[7] Jiber, M., Lamouik, I., Ali, Y., and Sabri, M. A., 2018, Traffic flow prediction using neural network. In 2018 International Conference on Intelligent Systems and Computer Vision (ISCV) 1-4.
[8] Gallo, M., De Luca, G., D’Acierno, L., and Botte, M., 2019, Artificial neural networks for forecasting passenger flows on metro lines. Sensors, 19(15), 3424.
[9] Kusonkhum, W., Srinavin, K., Leungbootnak, N., and Chaitongrat, T., 2022, Using a Machine Learning Approach to Predict the Thailand Underground Train’s Passenger. Journal of Advanced Transportation.
[10] Hou, Y., and Edara, P., 2018, Network scale travel time prediction using deep learning. Transportation Research Record, 2672(45), 115-123.
[11] Jia, Y., Wu, J.,and Xu, M., 2017.,Traffic flow prediction with rainfall impact using a deep learning method. Journal of Advanced Transportation 2017(722), 1-10
[12] Liu, L., and Chen, R. C., 2017, A MRT daily passenger flow prediction model with different combinations of influential factors. In 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA) 601-605.
[13] Shiao, Y. C., Liu, L., Zhao, Q., and Chen, R. C., 2017, Predicting passenger flow using different influence factors for Taipei MRT system. In 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST) , 447-451.
[14] Wu, J., and Liao, H., 2020, Weather, travel mode choice, and impacts on subway ridership in Beijing. Transportation research part A: policy and practice, 135, 264-279.
[15] Verma, T., Sirenko, M., Kornecki, I., Cunningham, S., & Araújo, N. A. , 2021, Extracting spatiotemporal commuting patterns from public transit data. Journal of Urban Mobility, 1, 100004.
[16] Mondal, M. A., and Rehena, Z., 2020, Road traffic outlier detection technique based on linear regression. Procedia Computer Science, 171, 2547-2555.
[17] Kim, S., Shibuya, T., Toride, S., and Endo, Y., 2022, A Human-Flow Analysis Based on PCA: A Case Study on Population Data Near Railway. In 2022 2nd International Conference on Robotics, Automation and Artificial Intelligence (RAAI).
[18] Reddi, S. J., Kale, S., and Kumar, S., 2019, On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237.