|
(1) Li, S.; Yuan, W.; Deng, G.; Wang, P.; Yang, P.; Aggarwal, B. Chemical composition and product quality control of turmeric (Curcuma longa L.). 2011. (2) Braga, M. E.; Leal, P. F.; Carvalho, J. E.; Meireles, M. A. A. Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J. agric. food chem 2003, 51 (22), 6604-6611. (3) Bangaraiah, P.; Ashok Kumar, P. EXTRACTION OF CURCUMIN FROM TURMERIC ROOTS. Int. J. Innov. Stud. 2013, 2. (4) Zhang, R.; Li, S.; Zhu, Z.; He, J. Recent advances in valorization of Chaenomeles fruit: A review of botanical profile, phytochemistry, advanced extraction technologies and bioactivities. Trends Food Sci. Tech. 2019, 91, 467-482. (5) Horosanskaia, E.; Yuan, L.; Seidel-Morgenstern, A.; Lorenz, H. Purification of curcumin from ternary extract-similar mixtures of curcuminoids in a single crystallization step. Crystals 2020, 10 (3), 206. (6) Tripathy, S.; Verma, D. K.; Thakur, M.; Patel, A. R.; Srivastav, P. P.; Singh, S.; Gupta, A. K.; Chavez-Gonzalez, M. L.; Aguilar, C. N.; Chakravorty, N. Curcumin extraction, isolation, quantification and its application in functional foods: a review with a focus on immune enhancement activities and COVID-19. Front. nutr. 2021, 8, 747956. (7) Popuri, A. K.; Pagala, B. Extraction of curcumin from turmeric roots. Int J Innovative Res. Stud. 2013, 2, 289-299. (8) Shirsath, S.; Sable, S.; Gaikwad, S.; Sonawane, S.; Saini, D.; Gogate, P. Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of different operating parameters. Ultrason. Sonochem. 2017, 38, 437-445. (9) Wakte, P. S.; Sachin, B.; Patil, A.; Mohato, D.; Band, T.; Shinde, D. Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Sep. Purif. Technol. 2011, 79 (1), 50-55. (10) Xu, J.; Wang, W.; Liang, H.; Zhang, Q.; Li, Q. Optimization of ionic liquid based ultrasonic assisted extraction of antioxidant compounds from Curcuma longa L. using response surface methodology. Ind. Crops. Prod. 2015, 76, 487-493. (11) Jacob, A.; Menon, V.; Paul, J.; Govindan, S. O.; Mathew, A. V. A Process for Extraction and Isolation of Curcuminoids.Pdf. WO 2018/020302 A1, February 1, 2018. (12) Attwood, B. C.; Hall, C. K. Solid–liquid phase behavior of ternary mixtures. AIChE journal 2008, 54 (7), 1886-1894. (13) Schott, H. A mathematical extrapolation for the method of wet residues. J. Chem. Eng. 1961, 6 (3), 324-324. (14) Deng, Y.; Sun, X.; Xu, L.; Ma, Z.; Liu, G. Solid–liquid equilibrium and phase diagram for the ternary succinic acid+ glutaric acid+ water system. J. Chem. Eng. 2014, 59 (8), 2589-2594. (15) Springuel, G.; Leyssens, T. Innovative chiral resolution using enantiospecific co-crystallization in solution. Cryst. Growth Des. 2012, 12 (7), 3374-3378. (16) Pálovics, E.; Faigl, F.; Fogassy, E. Separation of the mixtures of chiral compounds by crystallization. Advances in Crystallization Processes 2012, 3. (17) Menahem, T.; Pravda, M.; Mastai, Y. Correlation between structures of chiral polymers and their efficiency for chiral resolution by crystallization. Chirality: The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry 2009, 21 (9), 862-870. (18) Dunn, A. S.; Svoboda, V.; Sefcik, J.; ter Horst, J. H. Resolution control in a continuous preferential crystallization process. Org. Process Res. Dev. 2019, 23 (9), 2031-2041. (19) Buol, X.; Caro Garrido, C.; Robeyns, K.; Tumanov, N.; Collard, L.; Wouters, J.; Leyssens, T. Chiral resolution of mandelic acid through preferential cocrystallization with nefiracetam. Cryst. Growth Des. 2020, 20 (12), 7979-7988. (20) Sánchez-Guadarrama, O.; Mendoza-Navarro, F.; Cedillo-Cruz, A.; Jung-Cook, H.; Arenas-García, J. I.; Delgado-Díaz, A.; Herrera-Ruiz, D.; Morales-Rojas, H.; Höpfl, H. Chiral resolution of RS-praziquantel via diastereomeric co-crystal pair formation with L-malic acid. Cryst. Growth Des. 2016, 16 (1), 307-314. (21) Kodama, K.; Kimura, Y.; Shitara, H.; Yasutake, M.; Sakurai, R.; Hirose, T. Solvent‐induced chirality control in the enantioseparation of 1‐phenylethylamine via diastereomeric salt formation. Chirality 2011, 23 (4), 326-332. (22) Kodama, K.; Nagata, J.; Kurozumi, N.; Shitara, H.; Hirose, T. Solvent-induced chirality switching in the enantioseparation of regioisomeric hydroxyphenylpropionic acids via diastereomeric salt formation with (1R, 2S)-2-amino-1, 2-diphenylethanol. Tetrahedron: Asymmetry 2017, 28 (3), 460-466. (23) Simon, M.; Donnellan, P.; Glennon, B.; Jones, R. C. Resolution via Diastereomeric salt crystallization of ibuprofen lysine: ternary phase diagram studies. Chem. Eng. Technol. 2018, 41 (5), 921-927. (24) Yang, Y.; Zhang, H.; Du, S.; Chen, M.; Xu, S.; Jia, L.; Gong, J. Ternary phase diagram and the formation mechanism of two distinct solid solutions of amino acid systems: L-Valine/L-norvaline and L-valine/L-alanine. J. Chem. Thermodyn. 2018, 119, 34-43. (25) Kamei, T.; Hasegawa, K.; Kashiwagi, T.; Suzuki, E.; Yokota, M.; Doki, N.; Shimizu, K. Solid− Liquid Equilibria in an l-Isoleucine+ l-Alanine+ Water System. J. Chem. Eng. 2008, 53 (12), 2801-2806. (26) Pratama, D. E.; Huang, C.-Y.; Lee, T. A Mathematically Simplified Solid–Solid–Liquid Ternary Phase Diagram with Tie-Lines for Early Process Development Validated by Chiral Resolution of Racemic Ibuprofen. Ind. Eng. Chem. Res. 2024. (27) Münzberg, S.; Lorenz, H.; Seidel‐Morgenstern, A. Multistage countercurrent crystallization for the separation of solid solutions. Chem. Eng. Technol. 2016, 39 (7), 1242-1250. (28) Corvis, Y.; Guiblin, N.; Négrier, P.; Marenco, I.; Dembele, O.; Espeau, P. Scalemic mixtures preparation for optimized composition of ibuprofen solid dosage forms. Eur. J. Pharm. Biopharm. 2021, 169, 91-96. (29) Dwivedi, S.; Sattari, S.; Jamali, F.; Mitchell, A. Ibuprofen racemate and enantiomers: phase diagram, solubility and thermodynamic studies. Int. J. Pharm. 1992, 87 (1-3), 95-104. (30) Marc, L.; Lopes, C.; Schneider, J.-M.; Sanselme, M.; Coquerel, G. Impact of a partial solid solution and water molecules on the formation of fibrous crystals and fluid inclusions. Crystals 2021, 11 (10), 1188. (31) Ebbers, E. J.; Plum, B. J.; Ariaans, G. J.; Kaptein, B.; Broxterman, Q. B.; Bruggink, A.; Zwanenburg, B. New resolving bases for ibuprofen and mandelic acid: qualification by binary phase diagrams. Tetrahedron: Asymmetry 1997, 8 (24), 4047-4057. (32) Ukrainczyk, M.; Hodnett, B. K.; Rasmuson, Å. C. Process parameters in the purification of curcumin by cooling crystallization. Org. Process Res. Dev. 2016, 20 (9), 1593-1602. (33) Liu, J.; Svärd, M.; Hippen, P.; Rasmuson, Å. C. Solubility and crystal nucleation in organic solvents of two polymorphs of curcumin. J. Pharm. Sci. 2015, 104 (7), 2183-2189. (34) De Tseng, J.; Lee, H. L.; Yeh, K. L.; Lee, T. Recyclable positive azeotropes for the purification of curcumin with optimum purity and solvent capacity. Chem. Eng. Res. Des. 2022, 180, 200-211. (35) Olbrycht, M.; Balawejder, M.; Poplewska, I.; Lorenz, H.; Seidel-Morgenstern, A.; Pia̧tkowski, W.; Antos, D. Cooperative kinetic model to describe crystallization in solid solution forming systems. Cryst. Growth Des. 2019, 19 (3), 1786-1796. (36) Mohajerani, S. S.; Ricci, F.; Nordstrom, F. L. Solubility enhancements through crystalline solid solutions, the non-linear Tammann diagram and the T–X phase diagram of salicylic acid–benzoic acid. CrystEngComm 2023, 25 (17), 2607-2617. (37) Jacques, J.; Collet, A.; Wilen, S. H.; Collet, A. Enantiomers, racemates, and resolutions; Wiley New York, 1981. (38) Ahmad, N.; Ahmad, I.; Umar, S.; Iqbal, Z.; Samim, M.; Ahmad, F. J. RETRACTED ARTICLE: PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToF-MS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model. Drug Deliv. 2016, 23 (7), 2095-2114. (39) Guideline, I. H. T. Impurities: Guideline for residual solvents Q3C (R5). Current Step 2005, 4, 1-25.
|