|
[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electron. Mag. (1965) 4. [2] D.M. Newman, M.L. Wears, M. Jollie, and D. Choo, “Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording,” Nanotechnology. 18 (2007) 205301. [3] K.-Q. Peng, X. Wang, X. Wu, and S.-T. Lee, "Fabrication and photovoltaic property of ordered macroporous silicon," Appl. Phys. Lett. 95 (2009) 143119. [4] T. Søndergaard and S.I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express. 15 (2007) 4198. [5] J.L. Duan, D.Y. Lei, F. Chen, S.P. Lau, W.I. Milne, M.E. Toimil-Molares, C. Trautmann, and J. Liu, “Vertically-aligned single-crystal nanocone arrays: controlled fabrication and enhanced field emission,” ACS Appl. Mater. Interfaces 8 (2016) 472-479. [6] J. Bieker, F. Roustaie, H.F. Schlaak, C. Langer, R. Schreiner, M. Lotz, and S. Wilfert, “Field emission characterization of in situ deposited gold nanocones with variable cone densities,” J. Vac. Sci. Technol. 36 (2018) 2. [7] P.V. Trinh, N.N. Anh, N.T. Cham, L.T. Tu, N.V. Hao, B.H. Thang, N.V. Chuc, C.T. Thanh, P.N. Minh, and N. Fukata, “ Enhanced power conversion efficiency of an n Si PEDOTPSS hybrid solar cell using nanostructured silicon and gold nanoparticles,” RSC Adv. 12 (2022) 10514. [8] G. Otnes, E. Barrigón, C. Sundvall, K.E. Svensson, M. Heurlin, G. Siefer, L. Samuelson, I. Åberg, and M.T . Borgström, “Understanding InP nanowire array solar cell performance by nanoprobe-enabled single nanowire measurements,” Nano Lett. 18 (2018) 3038-3046. [9] O. Lupan, N. Ababii, A.K. Mishra, O. Gronenberg, A. Vahl, U. Schürmann, V. Duppel, H. Krüger, L. Chow, L. Kienle, F. Faupel, R. Adelung, N.H. de Leeuw, and S. Hansen, “Single CuO/Cu2O/Cu microwire covered by a nanowire network as a gas sensor for the detection of battery hazards,” ACS Appl. Mater. Interfaces 12 (2020) 42248-42263. [10] D. Yang, I. Cho, D. Kim, M.A. Lim, Z.Y. Li, J.G.Ok, M. Lee, and I. Park, “Gas sensor by direct growth and functionalization of metal oxide/metal sulfide core–shell nanowires on flexible substrates,” ACS Appl. Mater. Interfaces 11 (2019) 24298-24307. [11] Q.S. Hong, Y. Cao, J,Xu, H.M. Lu, J.H. He, and J.L. Sun,“Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array,” ACS Appl. Mater. Interfaces 6 (2014) 20887-20894. [12] C. Wang, F. Luo, H. Lu, X. Rong, B. Liu, G. Chu, Y. Sun, B. Quan, J. Zheng, J. Li, C. Gu, X. Qiu, H. Li, L. Chen. “A well-defined silicon nanocone-carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-Ion batteries,” ACS Appl. Mater. Interfaces 9 (2017) 2806-2814. [13] A. Krause, O. Tkacheva, A. Omar, U. Langklotz, L. Giebeler, S. Dörfler, F. Fauth, T. Mikolajick, and W.M. Weber. “In situ raman spectroscopy on silicon nanowire anodes Integrated in lithium Ion batteries,” J. Electrochem. Soc.166 (2019) A5378-A5385. [14] R. Ning, Y. Jiang, Y.T. Zeng, H.X. Gong, J.H. Zhao, J. Weisse, X.J. Shi, T.M. Gill, and X.L. Zheng, “On-demand production of hydrogen by reacting porous silicon nanowires with water,” Nano Res. 13 (2020) 1459-1464. [15] Z.Q. Yang, K. Du, F.F. Lu, Y. Pang, S.J. Hua, X.T. Gan, W.D. Zhang, S.J. Chua, and T. Mei, “Silica nanocone array as a template for fabricating a plasmon induced hot electron photodetector,” Photonics Research 7 (2019) 294-299. [16] X. Yan, B. Li, Y. Wu, X. Zhang, and X.M. Ren, “A single crystalline InP nanowire photodetector,” Appl. Phys. Lett. 109 (2016) 5. [17] A. E. Ashenafi and K. Tetsuo, “Enhanced photodetection capabilities of smaller size 2D Au/PtSi/P-Si nanohole array-based MIR schottky detector,” IEEE 37th International Conference on Micro Electro Mechanical Systems (2024). [18] R.K. Kothandaraman, Y. Jiang, T. Feurer, A.N. Tiwari, and F. Fu, “Near-infrared-transparent perovskite solar cells and perovskite-based tandem photovoltaics,” Small Methods 4 (2020) 2000395. [19] Z.Y. Qi, Y.S. Zhai, L. Wen, Q.L. Wang, Q. Chen, S. Iqbal, G.DA. Chen, J. Xu, and Y. Tu, “Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection,” Nanotechnology 28 (2017) 275202. [20] I. Mihalache, A. Radoi, R. Pascu, C. Romanitan, E. Vasile, and M. Kusko, “Engineering graphene quantum dots for enhanced ultraviolet and visible light p-Si nanowire-based photodetector,” ACS Appl. Mater. Interfaces 9 (2017) 29234-29247. [21] S.Y. Zhu, M.B. Yu, G.Q. Lo, D.L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92 (2008) 8. [22] S.E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10 (2010) 1012-1015. [23] S. Thiyagu, H.J. Syu, C.C. Hsueh, C.T. Liu, T.C. Lin, and C.F. Lin, “Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic–inorganic solar cells,” RSC Adv. 5 (2015) 13224-13233. [24] K. Nishio, S. Tagawa, T. Fukushima, and H. Masuda, “Highly ordered nanoporous Si for negative electrode of rechargeable lithium-ion battery,” electrochem. Solid-State Lett. 15 (2012) A41-A44. [25] J.Y. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z.Y. Huo, T.P. Russell, and P.D. Yang, “Holey silicon as an efficient thermoelectric material,” Nano Lett. 10 (2010) 4279-4283. [26] Z.Q. Ren, J.H. Cao, J.Y. Lim, Z.Q. Yu, J.C. Kim, and J. Lee, “Experimental Demonstration of holey silicon-based thermo electric cooling,” IEEE Trans Electron Devices 69 (2022) 3446-3454. [27] T.G. Chen, P. Yu, S.W. Chen, F.Y. Chang, B.Y. Huang, Y.C. Cheng, J.C. Hsiao, C.K. Li, and Y.R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22 (2014) 452-461. [28] T. Subramani, C.C. Hsueh, H.J. Syu, C.T. Liu, S.T. Yang, and C.F. Lin, “Interface modification for efficiency enhancement in silicon nanohole hybrid solar cells,” RSC Adv. 6 (2016) 12374-12381. [29] P. Varasteanu, A. Radoi, O. Tutunaru, A. Ficai, R. Pascu, M. Kusko, and I. Mihalache, “Plasmon-enhanced photoresponse of self-powered Si nanoholes photodetector by metal nanowires,” Nanomaterials 11 (2021) 9. [30] J. Yang, L.L. Tang, W. Luo, J. Shen, D.H. Zhou, S.L. Feng, X.Z. Wei, and H.F. Shi, “Light trapping in conformal graphene/silicon nanoholes for high-performance photodetectors,” ACS Appl. Mater. Interfaces 11 (2019) 30421-30429. [31] C. Escobedo, “On-chip nanohole array based sensing: A review,” Lab Chip 13 (2013) 2445. [32] N.N.N.M. Ibrahim, and A.M. Hashim, “fabrication of Si micropore and graphene nanohole structures by focused ion beam,” Sensors 20 (2020) 1572. [33] N. Khinevich, H. Bandarenka, S. Zavatski, K. Girel, A. Tamuleviciene, T. Tamulevicius, and S. Tamulevicius, “Porous silicon - A versatile platform for mass-production of ultrasensitive SERS-active substrates,” Microporous Mesoporous Mater. 323 (2021) 111204. [34] J.Y. Jung, M.J. Choi, K. Zhou, X.P. Li, S.W. Jee, H.D. Um, M.J. Park, K.T. Park, J.H. Bang, and J.H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A 2 (2014) 833-842. [35] F.A. Harraz, K. Kamada, K. Kobayashi, T. Sakka, and Y.H. Ogata, “Random macropore formation in p-Type silicon in HF-containing organic solutions: host matrix for metal deposition,” J. Electrochem. Soc. 152 (2005) C213-C220. [36] A.J. Fulton, V.O. Kollath, K. Karan, and Y.J. Shi, “Macroporous silicon formation by electrochemical anodization of n-type silicon without illumination, ” J. Appl. Phys. 124 (2018) 9. [37] C.X. Lin, L.J. Martínez, and M.L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21 (2013) A872-A882. [38] H. Asoh, K. Fujihara, and S. Ono, “Triangle pore arrays fabricated on Si (111) substrate by sphere lithography combined with metal-assisted chemical etching and anisotropic chemical etching,” Nanoscale Res. Lett. 7 (2012) 406. [39] A. Nur'aini and I. Oh, “Deep etching of silicon based on metal-assisted chemical etching,” ACS Omega 7 (2022) 16665-16665. [40] L. Rahmasari, M.F. Abdullah, A.R.M. Zain, and A.M. Hashim, “Silicon nanohole arrays fabricated by electron beam lithography and reactive ion etching,” Sains Malaysiana 48 (2019) 1157-1161. [41] S.H. Altinoluk, H.E. Ciftpinar, O. Demircioglu, F. Es, G. Baytemir, O. Akar, A. Aydemir, A. Sarac, T. Akin, and R. Turan, “Light trapping by micro and nano-hole texturing of single-crystalline silicon solar cells,” 6th International Conference on Silicon Photovoltaics 92 (2016) 291-296. [42] F.J. Wendisch, M. Abazari, H. Mahdavi, M. Rey, N. Vogel, M. Musso, O. Diwald, and G.R. Bourret, “Morphology-graded silicon nanowire arrays via chemical etching: engineering optical properties at the nanoscale and macroscale,” ACS Appl. Mater. Interfaces 12 (2020) 13140-13147. [43] C. In, J. Seo, H. Kwon, J. Choi, S. Sim, J. Kim, T. Kim, T. Lee, and H. Choi, “Counter balanced effect of surface trap and Auger recombination on the transverse terahertz carrier dynamics in silicon nanowires,” IEEE Trans. Terahertz Sci. Technol. 5 (2015) 605-612. [44] Y.M. Tseng, R.Y. Gu, C.W. Chang, and S.L. Cheng, “Facile fabrication of periodic arrays of vertical Si nanoholes on (001)Si substrate with broadband light absorption properties,” Applied Surface Science 480 (2019) 131–137. [45] L.Y. Kong, Y.S. Zhao, B. Dasgupta, K. Hippalgaonkar, X.L. Li, W.K. Chim, and S.Y. Chiam, “Minimizing isolate catalyst motion in metal-assisted chemical etching for deep trenching of silicon nanohole array,” ACS Appl. Mater. Interfaces 9 (2017) 20981-20990. [46] N. Verplanck, Y. Coffinier, V. Thomy, and R. Boukherroub, "Wettability switching techniques on superhydrophobic surfaces, “Nanoscale Res. Lett. 2 (2007) 577. [47] M. Callies and D. Quere, "On water repellency,” Soft matter. 1 (2005) 55. [48] K. Ma, T.S. Chung, and R.J. Good, “Surface energy of thermotropic liquid crystalline polyesters and polyesteramide,” J. Polym. Sci. B: Polym. Phys. 36 (1998) 2327. [49] R. Vitorino, A.S. Barros, S. Guedes, D.C. Caixeta, and R. Sabino-Silva, “Diagnostic and monitoring applications using near infrared (NIR) spectroscopy in cancer and other diseases,” Photodiagnosis Photodyn. Ther. 42 (2023) 103633. [50] K.B. Bec, J. Grabska, and C.W. Huck, “NIR spectroscopy of natural medicines supported by novel instrumentation and methods for data analysis and interpretation,” J. Pharm. Biomed. Anal. 193 (2021) 113686. [51] Y.Z. Zhang, T. Liu, B. Meng, X.H. Li, G.Z. Liang, X.N. Hu, and Q.J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4 (2013) 1811. [52] J.H. Wu, Z.W. Yang, C.Y. Qiu, Y.J. Zhang, Z.Q. Wu, Y J.L.ang, Y.H. Lu, J.F. Li, D.X.Yang, R. Hao, EP. Li, GL. Yu, and S.S. Lin, “Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles” Nanoscale 10 (2018) 8023-8030. [53] W. Lei, J. Antoszewski, and L. Faraone, “Progress, challenges, and opportunities for HgCdTe infrared materials and detectors,” Appl. Phys. Rev. 2 (2015) 4. [54] L.Y. Zheng, T. Zhu, W Z.Xu, L. Liu, J. Zheng, X. Gong, and F. Wudl, “Solution-processed broadband polymer photodetectors with a spectral response of up to 2.5 μm by a low bandgap donor–acceptor conjugated copolymer,” J. Mater. Chem. C 6 (2018) 3624-3641. [55] C. Li, J.H. Zhao, and Z.G. Chen, “Infrared absorption and sub-bandgap photo-response of hyperdoped silicon by ion implantation and ultrafast laser melting,” J. Alloys Compd. 883 (2021) 160765. [56] W.J. Yang, J. Mathews, and J.S. Williams, “Hyperdoping of Si by ion implantation and pulsed laser melting,” Mater. Sci. Semicond. Process. 62 (2017) 103–114. [57] M. Bednorz, G.J. Matt, E.D. Glowacki, T. Fromherz, C.J. Brabec, M.C. Scharber, H. Sitter, and N.S. Sariciftci, “Silicon/organic hybrid heterojunction infrared photodetector operating in the telecom regime,” Organic Electronics 14 (2013) 1344–1350. [58] Y.T. Wan, Z.Y. Zhang, R.L. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M.J. Kennedy, D. Liang, C. Zhang, J.W. Shi, A.C. Gossard, K.M. Lau, and J. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25 (2017) 27715-27723. [59] X.Z. Liu, Q. Zhou, S. Luo, H.W. Du, Z.S. Cao, X.Y. Peng, W.L. Feng, J. Shen, and D.P. Wei, “Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction,” ACS Appl. Mater. Interfaces 11 (2019) 17663-17669. [60] Z.H. Lou, L.H. Zeng, Y.G. Wang, D. Wu, T.T. Xu, Z.F. Shi, Y.T. Tian, X.J. Li, and Y.H. Tsang, “High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared,” Opt. Lett. 42 (2017) 3335-3338. [61] Q.Y. Wu, G.B.A. Cen, Y.J. Liu, Z. Ji, and W.J. Mai, “A simple-structured silicon photodetector possessing asymmetric Schottky junction for NIR imaging,” Phys. Lett. A 412 (2021) 127586. [62] T. Kan, Y. Ajiki, K. Matsumoto, and I. Shimoyama, “Si process compatible near-infrared photodetector using AU/SI nano-pillar array,” 2016 IEEE 29TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS) (2016) 624-627. [63] C.Y. Wu, Z.Q. Pan, Y.Y. Wang, C.W. Ge, Y.Q. Yu, J.Y. Xu, L. Wang, and L.B. Luo, “Core–shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector,” J. Mater. Chem. C 4 (2016) 10804-10811. [64] M. Fidan, Ö. Ünverdi, and C. Çelebi, “Junction area dependent performance of graphene/silicon based self-powered Schottky photodiodes,” Sens. Actuators A: Phys. A 331 (2021) 112829. [65] J.F. Masson, and “Portable and field-deployed surface plasmon resonance and plasmonic sensors,” Analyst 145 (2020) 3776. [66] J.J. Xu, W.C. Zhang, Y.W. Guo, X.Y. Chen, and Y.N. Zhang, “Metal nanoparticles as a promising technolog y in targeted cancer treatment,” Drug Delivery 29 (2022) 664-n678. [67] A. Andleeb, S. Asghar, G. Zaman, M. Tariq, A. Mehmood, M. Nadeem, C. Hano, J.M. Lorenzo, and B.H. Abbasi, “A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy,” Cancers 13 (2021) 2818. [68] D. D. Lin, Z. L. Wu, S. J. Li, W. Q. Zhao, C. J. Ma, J. Wang, Z. M. Jiang, Z. Y. Zhong, and Y. B. Zheng, and Yang, X. J. ”Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy,” ACS Nano 11 (2017) 1478-1478. [69] M.W. Shao, M.L. Zhang, N.B. Wong, D.D. Ma, H. Wang, W.W. Chen, and S.T. Lee, “Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy,” Appl. Phys. Lett. 93 (2008) 233118. [70] M. Tahir, B. Tahir, and N.A.S. Amin, “Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation,” Appl. Surf. Sci. 356 (2015) 1289-1299. [71] T.T. Hong, Z.F. Liu, X.R. Zheng, J. Zhang, and L. Yan, “Efficient photoelectrochemical water splitting over Co3O4 and Co3O4/Ag composite structure,” Appl. Catal. B: Environ. 202 (2017) 454-459. [72] D. D. Lin, Z. L. Wu, S. J. Li, W. Q. Zhao, C. J. Ma, J. Wang, Z. M. Jiang, Z. Y. Zhong, Y. B. Zheng, and X. J. Yang, “Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy,” ACS Nano 11 (2017) 1478-1487. [73] Z.W. Zuo, L.Y. Sun, Y.B. Guo, L.J. Zhang, J.H. Li, K.G. Li, and G.L. Cui, “Multiple plasmon couplings in 3D hybrid Au-nanoparticles-decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering,” Nano Res. 15 (2022) 317-325. [74] L.F. Wei, J.C. Lin, S.J. Xie, W.C. Ma, Q.H. Zhang, Z.B. Shen, and Y. Wang, “Photoelectrocatalytic reduction of CO2 to syngas over Ag nanoparticle modified p-Si nanowire arrays,” Nanoscale 11 (2019) 12530. [75] Z.X. Zhang, T. Martinsen, G.H. Liu, M. Tayyib, D.F. Cui, M.J. de Boer, F. Karlsen, H. Jakobsen, C.Y. Xue, and K.Y. Wang, “Ultralow broadband reflectivity in black silicon via synergy between hierarchical texture and specific-size Au nanoparticles,” Adv. Opt. Mater. 8 (2020) 19. [76] S.Q. Lim, C.T.K. Lew, P.K. Chow, J.M. Warrender, J.S. Williams, and B.C. Johnson, “Toward understanding and optimizing Au-hyperdoped Si infrared photodetectors” APL Mater. 8 (2020) 061109. [77] C.L. Mei, S. Liu, X. Huang, Z.K. Gan, P.Q. Zhou, and H. Wang, “Localized surface plasmon induced position-sensitive photodetection in silicon-nanowire-modified Ag/Si,” Small 13 (2017) 1701726. [78] K. Ramachandran, S. Columbus, S. Chidambaram, K. Daoudi, M.A. El Khakani, and M. Gaidi, “Fabrication of highly oriented 1D SiNW arrays/Au for femto molar level detection of H1N1 protein,” ACS Mater. Lett. 300 (2021) 130184. [79] M. Naffeti, P.A. Postigo, R. Chtourou, and M.A. Zaïbi, “Highly efficient silicon nanowire surface passivation by Bismuth nano-coating for multifunctional Bi@SiNWs heterostructures,” Nanomaterials 10 (2020) 1434. [80] L. Mehrvar, M. Sadeghipari, S.H. Tavassoli, S. Mohajerzadeh, and M. Fathipour, “Optical and Surface enhanced raman scattering properties of Ag modified silicon double nanocone array,” Sci. Rep 7 (2017) 1-13. [81] T.H. Chaneg, Y.C. Chang, C.M. Chen, and K.W. Chuang, “Optimizing pyramidal silicon substrates through the electroless deposition of Ag nanoparticles for high-performance surface-enhanced Raman scattering,” Thin Solid Films 676 (2019) 108-112. [82] M. Tsai, H. Chao, L. Ephrath, B. Crowder, A. Cramer, R. Bennett, C. Lucchese, and M. Wordeman, "One‐micron polycide (WSi2 on Poly‐Si) MOSFET technology," J. Electrochem. Soc. 128 (1981) 2207. [83] E. IBOK and S. GARG, “A Characterization of the effect of deposition temperature on polysilicon properties morphology dopability etchability and polycide properties,” J. Electrochem. Soc. 140 (1993) 2927-2937. [84] H. Iwai, T. Ohguro, and S.-i. Ohmi, “NiSi salicide technology for scaled CMOS ,” Microelectron. Eng. 60 (2002) 157. [85] S.L. Zhang and U. Smith, “Self-aligned silicides for Ohmic contacts in complementary metal–oxide–semiconductor technology TiSi2 CoSi2 and NiSi,” J. Vac. Sci. Technol. A 22 (2004) 1361-1370. [86] J.F. DiGregorio and R.N. Wall, “Small area versus narrow line width effects on the C49 to C54 transformation of TiSi/sub 2,” IEEE Electron Device Lett. 47 (2000) 313. [87] J.B. Lasky, J.S. Nakos, O.J. Cain, and P.J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi and COSi2,” IEEE Trans. Electron Devices 38 (1991) 2. [88] J.Y. Lin, H.M. Hsu, and K.C. Lu, "Growth of single-crystalline nickel silicide nanowires with excellent physical properties," CrystEngComm. 17 (2015) 1911. [89] W.L. Chiu, C.H. Chiu, J.Y. Chen, C.W. Huang, Y.T. Huang, K.C. Lu, C.L. Hsin, P.H. Yeh, and W.W. Wu, "Single-crystalline δ-Ni 2 Si nanowires with excellent physical properties," Nanoscale Res. Lett. 8 (2013) 1. [90] A.L. Schmitt, J.M. Higgins, J.R. Szczech, and S. Jin, “Synthesis and applications of metal silicide nanowires,” J. Mater. Chem. 20 (2010) 223–235. [91] Y. Song, L. Andrew, and J. Song, “Ultralong single-crystal metallic Ni2Si nanowires with low resistivity,” Nano Lett. 7 (2012) 965-969. [92] K. Kang, S.K. Kim, C.J. Kim, and M.H. Jo, “The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers,” Nano Lett. 8 (2008) 431-436. [93] A. Kosloff, E. Granot, Z. Barkay, and F. Patolsky, “Controlled formation of radial core-shell Si/metal silicide crystalline heterostructures,” Nano Lett. 18 (2018) 70. [94] Y.-W. Ok, T.-Y. Seong, C.-J. Choi, and K.N. Tu, “Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Appl. Phys. Lett. 88 (2006) 043016. [95] C. Chuang and S.L. Cheng, “Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures,” Nano Res. 7 (2014) 1592. [96] S. Lv, Z. Li, J. Liao, Z. Zhang, and W. Miao, “Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters,” J. Vac. Sci. Technol. B:Nanotechnol. Microelectron. 33 (2015) 02B101. [97] V. Lehmann, “The Physics of macropore formation in low doped n‐Type silicon,” J. Electrochem. Soc 140 (1993) 10. [98] V. Lehmann, R. Stengl, A. Luigart “On the morphology and the electrochemical formation mechanism of mesoporous silicon,” Mater. Sci. Eng. B69 (2000) 11-22. [99] J. Jakubowicz, “Nanoporous silicon fabricated at different illumination and electrochemical conditions,” Superlattices Microstruct. 41 (2007) 205–215 [100] O. Bisi, Stefano Ossicini, L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38 (2000) 1-126. [101] X. G. Zhang, “Morphology and formation mechanisms of porous silicon,” J. Electrochem. Soc 151 (2004) C69-C80.
|