跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/08 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佑軒
研究生(外文):You-Xuan Chen
論文名稱:研究多孔材料的孔徑分布:BJH方法的探討與機 器學習方法的應用潛力
論文名稱(外文):Pore Size Distribution of Porous Materials: Evaluation of the BJH Method and Potential of Machine Learning Approaches
指導教授:簡思佳
指導教授(外文):Szu-Chia Chien
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:86
中文關鍵詞:多孔材料孔徑分析BJH方法吸附曲線機器學習神經網路
外文關鍵詞:Porous materialPore size distributionBJH methodAdsorption isothermMachine learningNeural network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多孔材料,如金屬有機框架(Metal-organicframework,MOF)和沸石(Zeolite),在氣體儲存、氣體分離和催化等各種應用中展現出顯著的潛力。而在眾多的物理性質中,孔徑分布(Poresizedistribution, PSD)是評估吸附相關應用能力的關鍵因素。到目前為止,有很多種方法已經被開發並用以測定孔徑分布,其中Barrett-Joyner-Halenda(BJH)方法是最為廣泛使用的一種,僅透過吸附或脫附等溫線便能快速地計算孔徑分布。儘
管有許多文獻指出使用BJH方法可能會低估狹窄介孔的孔徑分布,但目前為止,仍缺乏對BJH方法進行全面評估的研究。
因此,本研究探索了200多種具有不同孔洞結構的MOFs,使用蒙地卡羅(Grand canonical Monte Carlo, GCMC)方法模擬這些材料的吸附曲線,接著利用BJH方法計算這些結構的孔徑分布,以探討BJH方法決定孔徑分布的可行性。此外,本研究還建立了一系列以石墨烯為基礎的理想孔洞結構,包含圓柱形孔洞、狹縫型孔洞以及三角形孔洞,全方面探討孔洞的幾何形狀及表面化學如何影響吸附曲線的特徵及BJH的孔徑分布。由於已知這些材料的原子結構,因此可以使用Zeo++以幾何方法計算它們的孔徑分布作為比較基準。本研究通過詳細比較BJH方法和Zeo++計算的孔徑分布,系統
性地評估BJH方法的準確性。此部份的研究結果深入理解了使用BJH方法測定多孔材料孔徑分布的侷限性。在BJH方法的假設過於簡單的情況下,不同的孔洞幾何與原子組成都會嚴重影響BJH方法計算出來的孔徑分布,因此BJH方法便很難應用於擁有多樣化結構及原子組成的MOFs。
此外,本研究還利用機器學習(Machinelearning,ML)方法通過吸附曲線直接預測每個結構的孔徑分布。透過建立深度神經網路(Deepneuralnetwork,DNN)和卷積神經網路(Convolutional neural network, CNN)模型,藉由吸附曲線來預測孔徑分布,並將結果與BJH方法及Zeo++得到的孔徑分布進行比較。使用機器學習方法預測得到的孔徑分布比BJH方法計算得到的孔徑分布有更高的精確性,在多孔材料孔徑分布中取得了突破。
本研究不僅系統性評估了BJH方法的準確性,還展示了用機器學習方法在多孔材料孔徑分布預測中的潛力,為未來相關研究及多孔材料性質測定提供了新的思路。
Porous materials such as metal-organic frameworks (MOFs) and zeolites have shown sig
nificant potential in various applications including gas storage, gas separation, and catalysis.
Among their numerous properties, pore size distribution (PSD) plays a critical role in their per
formanceinadsorption-related applications. Various methods have beendevelopedtodetermine
PSD, with the Barrett-Joyner-Halenda (BJH) method [1] being widely recognized as one of the
most renowned and extensively used techniques. The BJH method determines PSD from ad
sorption or desorption isotherms. Despite reports indicating potential underestimation of PSD
for narrow mesopores using the BJH method, a systematic assessment of its limitations and
exploration of improvement measures remains relatively lacking.
This study investigates over 200 structurally diverse MOFs to explore potential PSD under
estimation by the BJH method. Additionally, a series of carbon-based structures with varying
sizes were created as model systems to assess the geometric effects on PSD calculations. State
of-the-art grand canonical Monte Carlo (GCMC) simulations were employed to compute argon
adsorption isotherms of these structures, followed by BJH analysis to determine their PSD. Ge
ometric methods implemented in the Zeo++ package [2] were used to calculate their PSD as
benchmark references. Detailed comparisons between PSD obtained through BJH calculations and geometrically determined PSD provide a systematic evaluation of the accuracy of the BJH
method. The results offer profound insights into understanding PSD determination in porous
materials using the BJH method. Furthermore, efforts were made to develop a predictive model
for PSD determination using machine learning (ML) approaches. Specifically, deep neural net
work (DNN) and convolutional neural network (CNN) models were developed to predict PSDs
from argon adsorption isotherms, achieving satisfactory performance. While challenges remain
in achieving precise PSD predictions, the insights gained from this study contribute to method
ological developments for PSD determination in porous materials.
摘要i
Abstract iii
Contents v
ListofFigures vii
ListofTables xi
1 Introduction 1
1.1 Porousmaterials................................................................ 1
1.2 Metal-organicframework....................................................... 3
1.3 Poresizedistribution........................................................... 5
1.4 BJHmethod.................................................................... 6
1.5 ModificationbasedontheKelvinequation...................................... 8
1.6 Machinelearning............................................................... 9
1.7 Motivation..................................................................... 11
2 MethodsandSimulationSettings 13
2.1 Simulationmethodology........................................................ 13
2.1.1 GrandcanonicalMonteCarlosimulation................................ 13
2.1.2 Studiedmaterials ....................................................... 14
2.1.3 Simulationsettings...................................................... 15
2.2 BJHmethod.................................................................... 16
2.3 Geometrical-computed pore size distribution and Zeo++........................ 19
2.4 Machine learning............................................................... 20
3 Results and Discussion 24
3.1 The applicability of the BJHmethod............................................ 24
3.1.1 Monolayeradsorptionandcapillarycondensation....................... 24
3.1.2 Datapointsofadsorptionisotherm...................................... 26
3.1.3 PSD determination of selected MOFs ................................... 28
3.1.4 Modification on the BJHmethod........................................ 31
3.2 DifferentadsorptionbehaviorandcorrespondingPSDs ......................... 34
3.2.1 EffectofgeometriesonPSDs........................................... 34
3.2.2 EffectofsurfacechemistryonPSDs .................................... 35
3.3 MachinelearningapproachesforpredictingPSDs .............................. 38
3.3.1 Deepneuralnetworkmodels............................................ 38
3.3.2 Convolutionalneuralnetworkmodels................................... 53
4 Conclusion 57
4.1 BJHmethod.................................................................... 57
4.2 Machinelearning............................................................... 58
5 FutureWork 59
Bibliography 61
1. Van Donk, S., Janssen, A. H., Bitter, J. H. & de Jong, K. P. Generation, characterization, and
impact of mesopores in zeolite catalysts. Catalysis Reviews 45, 297–319 (2003).
2. Bhatia,S.ZeoliteCatalysts:PrinciplesandApplications(ChemicalRubberCompanyPress,2020).
3. Kuppler, R. J. et al. Potential applications of metal-organic frameworks. Coordination Chemistry
Reviews 253, 3042–3066 (2009).
4. Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nature
Chemistry 4, 83–89 (2012).
5. Martin,R.L.,Lin,L.-C.,Jariwala, K., Smit, B. &Haranczyk,M.Mail-ordermetal–organicframe
works (MOFs): Designing isoreticular MOF-5 analogues comprising commercially available or
ganic molecules. The Journal of Physical Chemistry C 117, 12159–12167 (2013).
6. Lin,R.-B., Xiang, S., Xing, H., Zhou, W. & Chen, B. Exploration of porous metal–organic frame
works for gas separation and purification. Coordination Chemistry Reviews 378, 87–103 (2019).
7. Lin, R.-B., Xiang, S., Zhou, W. & Chen, B. Microporous metal-organic framework materials for
gas separation. Chem 6, 337–363 (2020).
8. Marsh, H. &Reinoso, F. R. Activated carbon (Elsevier, 2006).
9. Reza,M.S.etal. Preparation of activated carbon from biomass and its’applications in water and
gas purification, a review. Arab Journal of Basic and Applied Sciences 27, 208–238 (2020).
10. Gregg, S. J., Sing, K. S. W. & Salzberg, H. Adsorption surface area and porosity. Journal of The
Electrochemical Society 114, 279Ca (1967).
11. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).
12. VanDerVoort,P.,Leus,K.&DeCanck,E.IntroductiontoPorousMaterials(JohnWiley&Sons,
2019).
13. Ishizaki, K., Komarneni, S. & Nanko, M. Porous Materials: Process technology and applications
(Springer Science & Business Media, 2013).
14. Thomas,J. M. &Thomas,W.J. Principles and Practice of Heterogeneous Catalysis (John Wiley
&Sons, 2014).
15. Perego,C.&Millini,R.Porousmaterialsincatalysis:challengesformesoporousmaterials.Chem
ical Society Reviews 42, 3956–3976 (2013).
16. Alkordi, M. H., Liu, Y., Larsen, R. W., Eubank, J. F. & Eddaoudi, M. Zeolite-like metal- organic
frameworks as platforms for applications: on metalloporphyrin-based catalysts. Journal of the
American Chemical Society 130, 12639–12641 (2008).
17. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2
separation. Nature 495, 80–84 (2013).
18. Bae, Y.-S. & Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide
separation and capture. Angewandte Chemie International Edition 50, 11586–11596 (2011).
19. Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G. & Sing, K. Adsorption by Powders and
Porous Solids: Principles, Methodology and Applications (Academic Press, 2013).
20. Kang, D. W. et al. Emerging porous materials and their composites for NH3 gas removal. Ad
vanced Science 7, 2002142 (2020).
21. Khabazipour, M. & Anbia, M. Removal of hydrogen sulfide from gas streams using porous ma
terials: A review. Industrial & Engineering Chemistry Research 58, 22133–22164 (2019).
22. Zhou,J.&Wang,B.Emergingcrystalline porous materials as a multifunctional platform for elec
trochemical energy storage. Chemical Society Reviews 46, 6927–6945 (2017).
23. Liu, C., Li, F., Ma, L.-P. & Cheng, H.-M. Advanced Materials for energy storage. Advanced Ma
terials 22, E28–E62 (2010).
24. Frackowiak, E. Carbon materials for supercapacitor application. Physical Chemistry Chemical
Physics 9, 1774–1785 (2007).
25. Sun, M.-H. et al. Applications of hierarchically structured porous materials from energy stor
age and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.
Chemical Society Reviews 45, 3479–3563 (2016).
26. Wu,L.,Li, Y., Fu, Z. & Su, B.-L. Hierarchically structured porous materials: Synthesis strategies
and applications in energy storage. National science review 7, 1667–1701 (2020).
27. Wu,Y.&Weckhuysen,B.M.Separationandpurification of hydrocarbons with porous materials.
Angewandte Chemie International Edition 60, 18930–18949 (2021).
28. Morris, R. E. Grown into shape. Nature Chemistry 3, 347–348 (2011).
29. James, S. L. Metal-organic frameworks. Chemical Society Reviews 32, 276–288 (2003).
30. Makiura, R. et al. Surface nano-architecture of a metal–organic framework. Nature Materials 9,
565–571 (2010).
31. Eddaoudi,M.etal.Systematicdesignofporesize andfunctionality in isoreticular MOFs and their
application in methane storage. Science 295, 469–472 (2002).
32. Zhao,D.,Timmons,D.J.,Yuan,D.&Zhou,H.-C.Tuningthetopologyandfunctionalityofmetal
organic frameworks by ligand design. Accounts of Chemical Research 44, 123–133 (2011).
33. Chen, L., Luque, R. & Li, Y. Controllable design of tunable nanostructures inside metal–organic
frameworks. Chemical Society Reviews 46, 4614–4630 (2017).
34. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally
stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).
35. Zhu, Q.-L., Li, J. & Xu, Q. Immobilizing metal nanoparticles to metal–organic frameworks with
size and location control for optimizing catalytic performance. Journal of the American Chemical
Society 135, 10210–10213 (2013).
36. Horcajada, P. et al. Metal–organic frameworks as efficient materials for drug delivery. Ange
wandte Chemie 118, 6120–6124 (2006).
37. Medishetty,R.,Zaręba, J. K., Mayer, D., Samoć, M.&Fischer,R.A.Nonlinearoptical properties,
upconversion and lasing in metal–organic frameworks. Chemical Society Reviews 46, 4976–5004
(2017).
38. Morozan, A. & Jaouen, F. Metal organic frameworks for electrochemical applications. Energy &
Environmental Science 5, 9269–9290 (2012).
39. Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chemical Reviews
112, 1105–1125 (2012).
40. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and
surface area. Science 309, 2040–2042 (2005).
41. Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the
limit? Journal of the American Chemical Society 134, 15016–15021 (2012).
42. Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh
surface area and gas storage capacities. Nature Chemistry 2, 944–948 (2010).
43. Murray,L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chemical
Society Reviews 38, 1294–1314 (2009).
44. He,Y., Zhou, W., Qian, G. & Chen, B. Methane storage in metal–organic frameworks. Chemical
Society Reviews 43, 5657–5678 (2014).
45. Millward, A. R. & Yaghi, O. M. Metal- organic frameworks with exceptionally high capacity for
storage of carbon dioxide at room temperature. Journal of the American Chemical Society 127,
17998–17999 (2005).
46. Wang, Q. M. et al. Metallo-organic molecular sieve for gas separation and purification. Microp
orous and Mesoporous Materials 55, 217–230 (2002).
47. Snurr, R. Q., Hupp, J. T. & Nguyen, S. T. Prospects for nanoporous metal-organic materials in
advanced separations processes. American Institute of Chemical Engineers Journal 50, 1090
1095 (2004).
48. Pan,L., Olson, D. H., Ciemnolonski, L. R., Heddy, R. & Li, J. Separation of hydrocarbons with a
microporous metal–organic framework. Angewandte Chemie International Edition 45, 616–619
(2006).
49. Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic
frameworks. Chemical Society Reviews 38, 1477–1504 (2009).
50. Britt, D., Furukawa, H., Wang, B., Glover, T. G. & Yaghi, O. M. Highly efficient separation of
carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the
National Academy of Sciences 106, 20637–20640 (2009).
51. Finsy, V. et al. Separation of CO2/CH4 mixtures with the MIL-53 (Al) metal–organic framework.
Microporous and Mesoporous Materials 120, 221–227 (2009).
52. DeCoste, J. B. & Peterson, G. W. Metal–organic frameworks for air purification of toxic chemi
cals. Chemical Reviews 114, 5695–5727 (2014).
53. Li, L. et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Sci
ence 362, 443–446 (2018).
54. Moghadam, P. Z. et al. Development of a Cambridge Structural Database subset: a collection of
metal–organic frameworks for past, present, and future. Chemistry of Materials 29, 2618–2625
(2017).
55. Chung, Y. G. et al. Advances, updates, and analytics for the computation-ready, experimental
metal–organic framework database: CoRE MOF 2019. Journal of Chemical & Engineering Data
64, 5985–5998 (2019).
56. Thommes, M. in Nanoporous Materials: Science and Engineering 317–364 (World Scientific,
2004).
57. Thommes, M. Physical adsorption characterization of nanoporous materials. Chemie Ingenieur
Technik 82, 1059–1073 (2010).
58. Xiong, Q., Baychev, T. G. & Jivkov, A. P. Review of pore network modelling of porous me
dia: Experimental characterisations, network constructions and applications to reactive transport.
Journal of Contaminant Hydrology 192, 101–117 (2016).
59. Song,D.&Li,J.Effectofcatalystporesizeonthecatalytic performance of silica supported cobalt
Fischer–Tropsch catalysts. Journal of Molecular Catalysis A: Chemical 247, 206–212 (2006).
60. Abbaslou, R. M. M., Soltan, J. & Dalai, A. K. Effects of nanotubes pore size on the catalytic per
formances ofiron catalysts supported on carbon nanotubes for Fischer–Tropsch synthesis. Applied
Catalysis A: General 379, 129–134 (2010).
61. Yuan, P. et al. Effect of pore diameter and structure of mesoporous sieve supported catalysts on
hydrodesulfurization performance. Chemical Engineering Science 111, 381–389 (2014).
62. Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distri
butions in porous substances. I. Computations from nitrogen isotherms. Journal of the American
Chemical Society 73, 373–380 (1951).
63. Horváth,G.&Kawazoe,K.Methodforthecalculationofeffectiveporesizedistributioninmolec
ular sieve carbon. Journal of Chemical Engineering of Japan 16, 470–475 (1983).
64. Saito,A.&Foley,H.Curvatureandparametricsensitivity in models for adsorption in micropores.
American Institute of Chemical Engineers Journal 37, 429–436 (1991).
65. Lastoskie,C., Gubbins, K.E.&Quirke,N.Poresizedistribution analysis of microporous carbons:
a density functional theory approach. The Journal of Physical Chemistry 97, 4786–4796 (1993).
66. Jagiello, J. & Olivier, J. P. A simple two-dimensional NLDFT model of gas adsorption in finite
carbon pores. Application to pore structure analysis. The Journal of Physical Chemistry C 113,
19382–19385 (2009).
67. Tarazona, P. Free-energy density functional for hard spheres. Physical Review A 31, 2672 (1985).
68. Tarazona, P., Marconi, U. M. B. & Evans, R. Phase equilibria of fluid interfaces and confined
fluids: non-local versus local density functionals. Molecular Physics 60, 573–595 (1987).
69. Jaroniec,M.,Kruk,M.,Olivier, J. P. &Koch,S.inStudiesinSurfaceScienceandCatalysis71–80
(Elsevier, 2000).
70. Kruk,M.&Jaroniec, M. Accurate method for calculating mesopore size distributions from argon
adsorption data at 87 K developed using model MCM-41 materials. Chemistry of Materials 12,
222–230 (2000).
71. Lowell, S., Shields, J. E., Thomas, M. A. & Thommes, M. Characterization of Porous Solids and
Powders: Surface area, Pore size and Density (Springer Science & Business Media, 2006).
72. Cohan,L.H.Sorptionhysteresis and the vapor pressure of concave surfaces. Journal of the Amer
ican Chemical Society 60, 433–435 (1938).
73. Broekhoff, J. & De Boer, J. Studies on pore systems in catalysts: IX. Calculation of pore distri
butions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical
pores A. Fundamental equations. Journal of Catalysis 9, 8–14 (1967).
74. Broekhoff, J. & De Boer, J. Studies on pore systems in catalysts: X. Calculations of pore distri
butions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical
pores B. Applications. Journal of Catalysis 9, 15–27 (1967).
75. Kruk, M., Jaroniec, M. & Sayari, A. Application of large pore MCM-41 molecular sieves to
improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267–6273
(1997).
76. Huang, B., Bartholomew, C. H. & Woodfield, B. F. Improved calculations of pore size distribu
tion for relatively large, irregular slit-shaped mesopore structure. Microporous and Mesoporous
Materials 184, 112–121 (2014).
77. Villarroel-Rocha, J., Barrera, D. & Sapag, K. Introducing a self-consistent test and the correspond
ing modification in the Barrett, Joyner and Halenda method for pore-size determination. Microp
orous and Mesoporous Materials 200, 68–78 (2014).
78. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. The
Bulletin of Mathematical Biophysics 5, 115–133 (1943).
79. Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding nature’s missing ternary
oxide compounds using machine learning and density functional theory. Chemistry of Materials
22, 3762–3767 (2010).
80. Rajan, K. Materials informatics. Materials Today 8, 38–45 (2005).
81. Xia, R. & Kais, S. Quantum machine learning for electronic structure calculations. Nature Com
munications 9, 4195 (2018).
82. Stein,H.S.,Guevarra,D.,Newhouse,P.F.,Soedarmadji,E.&Gregoire,J.M.Machinelearningof
optical properties of materials–predicting spectra from images and images from spectra. Chemical
Science 10, 47–55 (2019).
83. Wu, S. et al. Machine-learning-assisted discovery of polymers with high thermal conductivity
using a molecular design algorithm. NPJ Computational Materials 5, 66 (2019).
84. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems 25 (2012).
85. Ren,S.,He,K.,Girshick,R.&Sun,J.Fasterr-cnn:Towardsreal-timeobjectdetection with region
proposal networks. Advances in Neural Information Processing Systems 28 (2015).
86. Vaswani, A. et al. Attention is all you need. Advances in Neural Information Processing Systems
30 (2017).
87. Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural
Computation 18, 1527–1554 (2006).
88. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
89. Park, W. B. et al. Classification of crystal structure using a convolutional neural network. Inter
national Union of Crystallography Journal 4, 486–494 (2017).
90. Ryan, K., Lengyel, J. & Shatruk, M. Crystal structure prediction via deep learning. Journal of the
American Chemical Society 140, 10158–10168 (2018).
91. Groen, J. C., Peffer, L. A. & Pérez-Ramı́rez, J. Pore size determination in modified micro-and
mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and
Mesoporous Materials 60, 1–17 (2003).
92. Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications
(Elsevier, 2023).
93. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state
calculations by fast computing machines. The Journal of Chemical Physics 21, 1087–1092(1953).
94. Hastings,W.K.MonteCarlosamplingmethodsusingMarkovchainsandtheirapplications(1970).
95. Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation software
for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation 42, 81–101
(2016).
96. Humphrey,W.,Dalke,A.&Schulten,K.VMD:visualmoleculardynamics.JournalofMolecular
Graphics 14, 33–38 (1996).
97. Dubbeldam, D., Calero, S. & Vlugt, T. J. iRASPA: GPU-accelerated visualization software for
materials scientists. Molecular Simulation 44, 653–676 (2018).
98. Rappé, A. K., Casewit, C. J., Colwell, K., Goddard III, W. A. & Skiff, W. M. UFF, a full periodic
table force field for molecular mechanics and molecular dynamics simulations. Journal of the
American Chemical Society 114, 10024–10035 (1992).
99. Bird, R. B. Transport phenomena. Applied Mechanics Reviews 55, R1–R4 (2002).
100. Halsey, G. Physical adsorption on non-uniform surfaces. The Journal of Chemical Physics 16,
931–937 (1948).
101. Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools
for high-throughput geometry-based analysis of crystalline porous materials. Microporous and
Mesoporous Materials 149, 134–141 (2012).
102. Lin, J. Divergence measures based on the Shannon entropy. IEEE Transactions on Information
theory 37, 145–151 (1991).
103. Kullback, S. &Leibler, R. A. On information and sufficiency. The Annals of Mathematical Statis
tics 22, 79–86 (1951).
104. Shannon, C. E. A mathematical theory of communication. The Bell System Technical Journal 27,
379–423 (1948).
105. Arora, R., Basu, A., Mianjy, P. & Mukherjee, A. Understanding deep neural networks with recti
fied linear units. arXiv preprint arXiv:1611.01491 (2016).
106. Denker, J. & LeCun, Y. Transforming neural-net output levels to probability distributions. Ad
vances in Neural Information Processing Systems 3 (1990).
107. Grosse, I. et al. Analysis of symbolic sequences using the Jensen-Shannon divergence. Physical
Review E 65, 041905 (2002).
電子全文 電子全文(網際網路公開日期:20260801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊