跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李尚蓉
研究生(外文):Shang-Rong Li
論文名稱:開發綠色磁性金屬有機骨架材料結合磁性固相 萃取法檢測環境水樣中二苯甲酮殘留的研究
指導教授:丁望賢丁望賢引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:94
中文關鍵詞:超高效液相層析儀串聯四極桿飛行時間式質譜儀二苯甲酮類化合物金屬有機骨架磁性固相萃取
外文關鍵詞:(UHPLC-QTOF-MS)Benzophenones (BPs)metal-organic frameworks (MOFs)(magnetic solid phase extraction(MSPE)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究開發一種靈敏、簡單、快速、方便、消耗較少量吸附材料、不須離心機械力輔助,且對環境友善的檢驗方法,用於檢測環境水樣中五種benzophenones (BPs)汙染物之殘留。
環境水樣中以磁性金屬有機骨架當作吸附材料。金屬有機骨架中加入Fe3O4透過簡單的靜置組裝合成磁性金屬有機骨架(Fe3O4@ZIF-8),磁性吸附劑的優勢為簡單、高效和節省離心時間。本研究以磁性固相萃取法(Magnetic Solid Phase Extraction,MSPE)進行樣品前處理,以超高效液相層析儀串聯電灑游離法(+)四極桿飛行時間式質譜儀(UHPLC-ESI(+)-QTOF-MS)分析。
前處理實驗中,先以單因子對實驗條件進行選擇及優化,再以實驗設計探討多因子間的交互關係,實驗設計只須較少的實驗次數,即可得到最優化的實驗條件,以此降低實驗時間和耗材成本。先以Multilevel categoric design (MLCD)實驗設計進行非數值因子的最佳化。再以Box-Behnkne Design (BBD) 實驗設計進行數值因子的最優化。
本研究開發的方法之偵測極限(LOD)及定量極限(LOQ)分別介於 0.05-0.3 ng/mL 及 LOQ : 0.2-2 ng/mL。再以 Intra day & Inter day 檢測其精密度和再現性,相對標準偏差(RSD)皆小於8%,表示此方法有良好的再現性,且在環境水樣中檢測到benzophenones (BPs) 的殘留。研究結果得知本研究開發的方法是一種簡單、快速且相對環境友善的檢測方法。
This research developed a simple, efficient, and environmentally friendly analytical method for the determination of five frequently found benzophenones (BPs) residues in our aquatic environment, and no need for time-consuming centrifugal mechanical force assistance.
A magnetic zeolitic imidazolate framework‑8 (Fe3O4@ZIF-8) was synthesized by a static self-assembled method and applied as an adsorbent for the magnetic solid phase extraction (MSPE) technique. MSPE was then coupled with ultra-high performance liquid chromatography electrospray ionization (+)-quadrupole time-of-flight mass spectrometry (UHPLC-ESI (+)-QTOF-MS) to determine five target BPs residues in water samples. Comparison with traditional dispersive micro solid-phase extraction, the magnetic adsorbent of MSPE is the key factor affecting the adsorption effect during a sample pretreatment due to the magnetic adsorbent is quickly separated from the sample solution by applying an external magnetic field (no centrifugation), allowing the simple and convenient isolation of analytes.
One-factor-at-a-time approaches were conducted initially to select experimental conditions, and then experimental designs approaches were applied to explore the interaction between multiple experimental factors. Application of experimental designs minimized the number of experimental runs requiring to obtain the optimal conditions, thus reducing experimental time and the costs. In this study, multilevel categoric design (MLCD) was firstly used for the screening of non-numeric factors, and followed by Box-Behnken Design (BBD) for optimization of numeric factors. After optimization, the limits of detection (LOD) and limits of quantification (LOQ) of the method ranged between 0.050.3 ng/mL and 0.22 ng/mL, respectively. Precision was evaluated using intra-day and inter-day analyses, with relative standard deviations (RSD) of all below 8%, indicating good repeatability of the method. A preliminary analysis of the surface water revealed that 2- hydroxy-4-methoxybenzophenone (BP-3) was the most common BPs present in our aquatic environment, likely due to its widespread applications and slow rate of degradation.
目錄
摘要...................................................... i
Abstract.................................................iii
謝誌 ..................................................... v
目錄 ................................................... vii
圖目錄 ................................................... x
表目錄 ................................................... x
第一章 前言 .............................................. 1
1-1研究緣起 .............................................. 1
1-2研究目的 .............................................. 2
第二章 文獻回顧 ........................................... 3
2-1金屬有機骨架 ........................................... 3
2-1-1金屬有機骨架簡介...................................... 3
2-1-2金屬有機骨架發展及應用................................. 4
2-1-3磁性金屬有機骨架材料.................................. 5
2-1-4金屬有機骨架ZIFs系列 ............................... 8
2-2磁性固相萃取法(Magnetic Solid Phase Extraction簡稱MSPE) ...... 11
2-2-1前言................................................ 11
2-2-2原理................................................ 12
2-3二苯甲酮類化合物(BPs) ............................... 13
2-3-1介紹................................................ 13
2-3-2對環境及人體的影響................................... 15
2-3-3相關法規............................................ 15
第三章 實驗步驟及樣品分析 ................................. 17
3-1實驗藥品和設備 ........................................ 17
3-1-1實驗藥品............................................ 17
3-1-2儀器設備............................................ 18
3-2實驗步驟 ............................................. 19
3-2-1標準品配置.......................................... 19
3-2-2超超高效液相層析串聯四極桿飛行時間式質譜儀參數設定...... 20
3-2-3質量校正............................................ 21
3-2-4磁性金屬有機骨架(MOF)合成 ........................... 22
3-2-4-1 Fe3O4合成........................................ 22
3-2-4-2 Fe3O4@ZIF-8合成 ................................. 23
3-2-4-3 Fe3O4@ZIF67-8合成 ............................... 23
3-2-5磁性金屬有機骨架Fe3O4@ZIF-8鑑定及性質探討 ............ 24
3-2-5-1 SEM圖 ........................................... 24
3-2-5-2 EDX圖 ........................................... 25
3-2-5-3紅外光譜圖 ....................................... 26
3-2-5-4 X射線繞射圖譜 .................................... 27
3-2-5-5熱重分析圖 ....................................... 29
3-2-5-6氮氣等溫吸脫附圖 .................................. 30
3-2-5-7超導量子干涉磁化圖 ................................ 31
3-2-6磁性固相萃取(micro-solid phase extraction,簡稱MSPE). 32
第四章 結果與討論 ........................................ 33
4-1 UPLC-QTOF-MS 對待測物的測定 .......................... 33
4-1-1待測物層析圖譜....................................... 33
4-1-2待測物的質譜圖....................................... 34
4-2磁性固相萃取法條件優化探討 ............................. 35
4-2-1單因子優化探討....................................... 35
4-2-1-1磁性金屬有機骨架吸附材料的選擇 ..................... 35
4-2-1-2磁性金屬有機骨架吸附材料的用量 ..................... 36
4-2-1-3萃取過程的機械力選擇 .............................. 37
4-2-1-4吸附過程的時間 .................................... 38
4-2-1-5脫附過程的時間 .................................... 39
4-2-1-6脫附溶劑的選擇 .................................... 40
4-2-1-7脫附溶劑的用量 .................................... 41
4-2-2實驗設計(Design of Experiments) .................... 42
4-2-2-1 Multilevel categoric design(MLCD) ............... 43
4-2-2-2 Box-Behnkne Design(BBD) ......................... 52
4-3 檢量線與檢測極限 ..................................... 63
4-4 方法準確度與精密度 ................................... 64
4-5 真實樣品檢測 ......................................... 65
第五章 結論 ............................................. 69
參考文獻 ................................................ 71
附錄 .................................................... 77
[1] L. Carstensen, S. Beil, H. Börnick, and S. Stolte, “Structure-related endocrine-disrupting potential of environmental transformation products of benzophenone-type UV filters: A review,” Journal of Hazardous Materials, vol. 430, pp. 128495-128515, May, 2022.

[2] C. A. Downs, K.-W. Esti, R. Segal, S. Knutson, O. Bronstein, Y. Lichtenfeld, F. R. Ciner, J. Fauth, R. Jeger, C. M. Woodley, P. Pennington, A. Kushmaro, and Y. Loya, “Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands,” Archives of Environmental Contamination and Toxicology vol. 70, no. 2, pp. 265-288, October, 2016.

[3] E. Mikamo, S. Harada, J.-i. Nishikawa, and T. Nishihara, “Endocrine disruptors induce cytochrome P450 by affecting transcriptional regulation via pregnane X receptor,” Toxicology and Applied Pharmacology, vol. 193, pp. 66-72, November, 2003.

[4] M. C. Cuquerella, L.-V. Virginie, J. Cadet, and M. A.Miranda, “Benzophenone Photosensitized DNA Damage,” Accounts of Chemical Research, vol. 45(9), pp. 1558-1570, June, 2012.

[5] C. G. Santamaria, N. Meyer, A. Schumacher, M. L. Zenclussen, C. M. Teglia, M. J. Culzoni, A. C. Zenclussen, and H. A. Rodriguez, “Dermal exposure to the UV filter benzophenone-3 during early pregnancy affects fetal growth and sex ratio of the progeny in mice,” Archives of Toxicology vol. 94, no. 8, pp. 2847-2859, May 2020.

[6] D. Sasseville, N.-B. M´elissa, and R. Molinari, “Multiple contact allergies to benzophenones,” Contact Dermatitis, vol. 65, no. 3, pp. 179-181, September, 2011.

[7] V. F. Yusuf, N. I. Malek, and S. K. Kailasa, “Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment,” ACS Omega, vol. 7, no. 49, pp. 44507-44531, December, 2022.

[8] H.-C. Zhou, J. R. Long, and O. M. Yaghi, “Introduction to metal-organic frameworks,” Chemical Reviews, vol. 112, no. 2, pp. 673-674, January 2012.

[9] M. Safaei, M. M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, and M. Khatami, “A review on metal-organic frameworks: Synthesis and applications,” TrAC Trends in Analytical Chemistry, vol. 118, pp. 401-425, June, 2019.

[10] Y. Sneha, D. Ranjana, S. Shivani, D. Sriparna, S. Kanika, and R. K. Sharma, “Magnetic metal–organic framework composites: structurally advanced catalytic materials for organic transformations,” Materials Advances, vol. 2, no. 7, pp. 2153-2187, April, 2021.

[11] F. Maya, C. P. Cabello, R. M. Frizzarin, J. M. Estela, G. T. Palomino, and V. Cerd, “Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons,” Trends in Analytical Chemistry (TrAC), vol. 90, pp. 142-152, May 2017.

[12] J. Li, L. Liao, Y. Jia, T. Tian, S. Gao, C. Zhang, W. Shen, and Z. Wang, “Magnetic Fe3O4/ZIF-8 optimization by Box-Behnken design and its Cd(II)-adsorption properties and mechanism,” Arabian Journal of Chemistry, vol. 15, no. 10, pp. 104119-104137, July 2022.

[13] Z. Feng, J. Zhu, S. Zhuo, J. Chen, W. Huang, H. Cheng, L. Li, T. Tang, and J. Feng, “Magnetic/Zeolitic Imidazolate Framework-67 Nanocomposite for Magnetic Solid-Phase Extraction of Five Flavonoid Components from Chinese Herb Dicranopteris pedata,” Molecules, vol. 28, no. 2, pp. 702-716, January, 2023.

[14] A. Mehdinia, D. J. Vaighan, and A. Jabbari, “Cation Exchange Superparamagnetic Al-Based Metal Organic Framework (Fe3O4/MIL-96(Al)) for High Efficient Removal of Pb(II) from Aqueous Solutions,” ACS Sustainable Chemistry & Engineering, vol. 6, no. 3, pp. 3176-3186, January 2018.

[15] A. Bhattacharjee, S. Gumma, and M. K. Purkait, “Fe3O4 promoted metal organic framework MIL-100(Fe) for the controlled release of doxorubicin hydrochloride,” Microporous and Mesoporous Materials, vol. 259, pp. 203-210, March 2018.

[16] H. T. M. Thanh, N. T. T. Tu, N. P. Hung, T. N. Tuyen, T. X. Mau, and D. Q. Khieu, “Magnetic iron oxide modified MIL-101 composite as an efficient visible-light-driven photocatalyst for methylene blue degradation,” Journal of Porous Materials, vol. 26, no. 6, pp. 1699-1712, May, 2019.

[17] Z. Zheng, Z. Rong, H. L. Nguyen, and O. M. Yaghi, “Structural Chemistry of Zeolitic Imidazolate Frameworks,” Inorganic Chemistry, vol. 62, no. 51, pp. 20861-20873, December, 2023.

[18] “Chemistry Structure Resource (RCSR). ,” http://rcsr.anu.edu.au/netsReticular

[19] “The Cambridge Crystallographic Data Centre (CCDC),” https://www.ccdc.cam.ac.uk/structures/? .

[20] “Database of Zeolite Structures. Zeolite Framework Types. ,” http://asia.iza-structure.org/IZA-SC/ftc_table.php.

[21] K. Noh, J. Lee, and J. Kim, “Compositions and Structures of Zeolitic Imidazolate Frameworks,” Israel Journal of Chemistry, vol. 58, no. 9-10, pp. 1075-1088, October, 2018.

[22] K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, J. U.-R. Fernando, H. K. Chae, M. O’Keeffe, and O. M. Yaghi, “Exceptional chemical and thermal stability of zeolitic imidazolate frameworks,” The Proceedings of the National Academy of Sciences (PNAS), vol. 103, no. 27, pp. 10186-10191, July, 2006.

[23] C. Duan, Y. Yu, and H. Hu, “Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis,” Green Energy & Environment, vol. 7, no. 1, pp. 3-15, February, 2022.

[24] S. Feng, X. Zhang, D. Shi, and Z. Wang, “Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review,” Frontiers of Chemical Science and Engineering, vol. 15, no. 2, pp. 221-237, April, 2020.

[25] A. Maleki, M.-A. Shahbazi, V. Alinezhad, and A. S. Hélder, “The Progress and Prospect of Zeolitic Imidazolate Frameworks in Cancer Therapy, Antibacterial Activity, and Biomineralization,” Advanced Healthcare Materials, vol. 9, no. 12, pp. 2000248, May, 2020.

[26] X. Xu, H. Wang, J. Liu, and H. Yan, “The applications of zeolitic imidazolate framework-8 in electrical energy storage devices: a review,” Journal of Materials Science: Materials in Electronics, vol. 28, no. 11, pp. 7532-7543, February 2017.

[27] X.-Q. Yang, C.-X. Yang, and X.-P. Yan, “Zeolite imidazolate framework-8 as sorbent for on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of tetracyclines in water and milk samples,” Journal of Chromatography A, vol. 1304, pp. 28-33, August, 2013.

[28] K. S. Park, Z. Ni, A. P.Côté, J. Y. Choi, R. Huang, J. U.-R. Fernando, H. K. Chae, M. O’Keeffe, and O. M. Yaghi, “Exceptional chemical and thermal stability of zeolitic imidazolate frameworks,” The Proceedings of the National Academy of Sciences (PNAS), vol. 103(27), pp. 10186-10191, July, 2006.

[29] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, and O. M. Yaghi, “High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture 67,” Science, vol. 319, no. 5865, pp. 939-943, February, 2008.

[30] C.-X. Yang, and X.-P. Yan, “Fabrication of a Metal - Organic Frameworks ZIF -8@ Fe3O4 Composite and Its Magnetic Solid Phase Extraction of Endocrine Disrupting Chemicals in Water,” Journal of Instrumental Analysis, vol. 38, no. 5, pp. 563-568, May, 2019.

[31] X. Liu, Z. Sun, G. Chen, W. Zhang, Y. Cai, R. Kong, X. Wang, Y. Suo, and J. You, “Determination of phthalate esters in environmental water by magnetic Zeolitic Imidazolate Framework-8 solid-phase extraction coupled with high-performance liquid chromatography,” Journal of Chromatography A, vol. 1409, pp. 46-52, August, 2015.

[32] X. Wu, H.-Y. Wang, Z.-Z. An, Z.-L. Li, Y.-Q. Jia, M.-M. Wang, and Y.-L. Hao, “Determination of 3 Benzoylurea Insecticides in Fruit Juice by High Performance Liquid Chromatography with ZIF – 8 @ Fe3 O4 Based Magnetic Solid-phase Extraction,” Journal of Instrumental Analysis, vol. 39, no. 5, pp. 583-589, May, 2020.

[33] Y. Qi, S. Wang, M. Wan, A. M. A. El-Aty, and J. Wang, “A "half" core-shell magnetic nanohybrid composed of zeolitic imidazolate framework and graphitic carbon nitride for magnetic solid-phase extraction of sulfonylurea herbicides from water samples followed by LC-MS/MS detection,” Mikrochim Acta, vol. 187, no. 5, pp. 279, April 2020.

[34] J. Peng, H. Tian, Q. Du, X. Hui, and H. He, “A regenerable sorbent composed of a zeolite imidazolate framework (ZIF-8), Fe(3)O(4) and graphene oxide for enrichment of atorvastatin and simvastatin prior to their determination by HPLC,” Mikrochim Acta, vol. 185, no. 2, pp. 141-150, January, 2018.

[35] S. B. Wu, C. Long, and E. J. Kennelly, “Structural diversity and bioactivities of natural benzophenones,” Natural Product Reports, vol. 31, no. 9, pp. 1158-1174, September 2014.

[36] “衛生福利部,衛授字第1071608162號,2018.”

[37] “Scientific Committee on Consumer Safety,”.

[38] “中國《化妝品安全技術規範》2015,”

[39] S. R. Ahmed, J. Dong, M. Yui, T. Kato, J. Lee, and E. Y. Park, “Quantum dots incorporated magnetic nanoparticles for imaging colon carcinoma cells,” Journal of nanobiotechnology, vol. 28, no. 11, pp. 2-9, August, 2013.

[40] H. Ma, M. Li, T. Yu, H. Zhang, M. Xiong, and F. Li, “Magnetic ZIF-8-Based Mimic Multi-enzyme System as a Colorimetric Biosensor for Detection of Aryloxyphenoxypropionate Herbicides,” ACS Applied Materials & Interfaces, vol. 13, no. 37, pp. 44329-44338, September, 2021.

[41] X. Song, J. Mo, Y. Fang, S. Luo, J. Xu, and X. Wang, “Synthesis of magnetic nanocomposite Fe(3)O(4)@ZIF-8@ZIF-67 and removal of tetracycline in water,” Environmental Science and Pollution Research, vol. 29, no. 23, pp. 35204-35216, January 2022.

[42] Y. Wu, B. Li, X. Wang, S. Yu, H. Pang, Y. Liu, X. Liu, and X. Wang, “Magnetic metal-organic frameworks (Fe3O4@ZIF-8) composites for U(VI) and Eu(III) elimination: simultaneously achieve favorable stability and functionality,” Chemical Engineering Journal, vol. 378, pp. 122105-122117, December, 2019.

[43] E. G. Masibi, T. A. Makhetha, and R. M. Moutloali, “Effect of the Incorporation of ZIF-8@GO into the Thin-Film Membrane on Salt Rejection and BSA Fouling,” Membranes vol. 12, no. 4, pp. 436-459, April, 2022.

[44] Z. Lin, W. Zhang, Y. Zhao, H. Shen, H. Lin, and J. Liang, “Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method,” Scientific Reports, vol. 5, pp. 9320-9326, March 2015.

[45] T. Li, M. Lu, Y. Gao, X. Huang, G. Liu, and D. Xu, “Double layer MOFs M-ZIF-8@ZIF-67: The adsorption capacity and removal mechanism of fipronil and its metabolites from environmental water and cucumber samples,” Journal of Advanced Research, vol. 24, pp. 159-166, Jul, 2020.
電子全文 電子全文(網際網路公開日期:20260630)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top