跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾德祐
研究生(外文):De-you Zeng
論文名稱:雙噻吩醯亞胺(BTI)與三苯胺(TPA)衍生物之 電洞傳輸層材料開發
指導教授:陳銘洲
指導教授(外文):Ming-Chou Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:209
中文關鍵詞:錫鈣鈦礦太陽能電池鈣鈦礦太陽能電池電洞傳輸層材料雙噻吩醯亞胺自組裝單分子層
外文關鍵詞:tin-based perovskite solar cellsperovskite solar cellshole transport materialsbithiophene-imideself-assembled monolayers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:3
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文開發出12個電洞傳輸層材料 (hole transport martials, HTMs),作為自組裝單分子層 (self-assembled monolayers, SAMs),沉積在NiOx薄膜上,應用於錫鈣鈦礦太陽能電池 (Sn-PSC),並依照使用的不同核心:雙噻吩醯亞胺 (bithiophene-imide, BTI) 與芳香環 (aromatic ring, Ar) 分為兩個系列。
本研究第一系列以不同碳鏈長之BTI作為核心,於一端接上推電子基團三苯胺(triphenylamine, TPA),另一端則分別接上錨定基團氰乙酸乙烯基 (cyanoacetic acid, CA)、氰磷酸二乙酯乙烯基 (diethyl cyanomethylphosphonate, PE) 和氰磷酸乙烯基 (cyanophosphonic acid, PA),合成出 BTI-8-CA (1)、BTI-16-CA (1’)、BTI-8-PE (2)、BTI-16-PE (2’)、BTI-8-PA (3) 與 BTI-16-PA (3’) 六個材料,以自組裝的方式製成元件應用於錫鈣鈦礦太陽能電池。
本研究第二部份亦開發一系列自組裝材料,首先使用三種芳香環:苯 (phenyl, P)、噻吩 (thiophene, T)、硒吩 (selenophene, Sp) 作為間隔基團 (spacer group),以調控材料能階及增加分子內電荷轉移,一端以三苯胺 (TPA) 為推電子基團,另一端分別接上氰磷酸二乙酯乙烯基 (PE) 和氰磷酸乙烯基 (PA),合成出TPA-P-PE (4)、TPA-P-PA (5)、TPA-T-PE (6)、TPA-T-PA (7)、TPA-Sp-PE (8) 和 TPA-Sp-PA (9) 六個材料,此系列材料同樣以自組裝製程,搭配NiOx應用於錫鈣鈦礦太陽能電池進行元件測試,其中 TPA-Sp-PE (8) 及 TPA-Sp-PA (9) 光電轉換效率分別達到8.3 % 與8.4%,能與目前使用自組裝製程的錫鈣鈦礦太陽能電池材料 (TQxD) 之最高報導效率 8.3% 相媲美,期盼後續條件優化能有進一步提升。
為了進一步了解材料的光學和電化學性質,已藉由 UV-Vis 和 DPV進行測定 (如Eg 和 HOMO / LUMO),並透過TGA和DSC進行熱穩定性量測,以及使用SXRD鑑定單晶結構,目前已將以上新開發之自組裝材料送測元件效能,期望元件效率能進一步提高。
This study develops twelve hole transport materials (HTMs) as self-assembled monolayers (SAMs) deposited on NiOx films for tin-based perovskite solar cells (Sn-PSC). These HTMs are categorized into two series based on bithiophene-imide (BTI) and aryl (Ar) groups as central cores.
The first series involves BTI core with varying carbon chain lengths and electron-donating triphenylamine (TPA) groups at one end, and anchoring groups such as cyanoacetic acid (CA), diethyl cyanomethylphosphonate (PE), and (cyanomethyl)phosphonic acid (PA) at the other end. Consequently, six materials, BTI-8-CA (1), BTI-16-CA (1'), BTI-8-PE (2), BTI-16-PE (2'), BTI-8-PA (3), and BTI-16-PA (3'), were synthesized and applied in Sn-PSCs via self-assembly.
The second series of SAMs was developed using three aromatic rings—phenyl (P), thiophene (T), and selenophene (Sp)— as spacer groups to modulate material energy levels and enhance intramolecular charge transfer. TPA served as the electron-donating group at one end, while PE and PA were attached at the other end. This led to the synthesis of six materials: TPA-P-PE (4), TPA-T-PE (5), TPA-Sp-PE (6), TPA-P-PA (7), TPA-T-PA (8), and TPA-Sp-PA (9). Currently, these materials are being applied in Sn-PSCs, with ongoing device testing. Notably, TPA-Sp-PE (8) and TPA-Sp-PA (9) SAMs achieved impressive PCE of 8.3% and 8.4%, respectively, comparable to the highest reported efficiency of 8.3% for TQxD-based Sn-PSCs. Further improvements are expected after device optimization.
Furthermore, UV-Vis and DPV measurements were conducted to understand the optical and electrochemical properties, including Eg and HOMO / LUMO, while thermal stability was measured via TGA and DSC. Single crystal XRD was utilized to study structural properties. These newly developed SAMs are currently undergoing device performance testing and optimization and expected to achieve enhanced efficiency.
摘 要 II
Abstract IV
謝 誌 VII
目錄 VIII
List of Figures XV
List of Schemes XIX
List of Tables XXI
附錄 XXII
第一章 緒論 1
1-1 前言 2
1-2 有機太陽能電池之概論 3
1-2-1 矽晶太陽能電池 5
1-2-2 無機化合物半導體太陽能電池 6
1-2-3 有機太陽能電池 7
1-3 太陽能電池參數介紹 9
1-3-1 J-V 曲線 11
1-3-2 短路電流(Short circuit current, JSC) 12
1-3-3 開路電壓(Open circuit voltage, VOC) 12
1-3-4 外部量子效率(Eternal quantum efficiency, EQE) 12
1-3-5 填充因子(Fill factor, FF) 13
1-3-6 能量轉換效率(Power conversion efficiency, η, PCE) 13
1-4 鈣鈦礦太陽能電池簡介 14
1-4-1 元件基本架構 17
1-4-2 工作原理 19
1-4-3 電洞傳輸層 20
一、 鉛鈣鈦礦太陽能電池之電洞傳輸層材料 23
二、 錫鈣鈦礦太陽能電池之電洞傳輸層材料 25
三、 自組裝單分子膜 (SAMs) 之電洞傳輸層材料 29
1-5 研究動機與目的 34
1-5-1電洞傳輸層材料 (BTI-based SAM) 34
1-5-2電洞傳輸層材料(Ar-based SAM) 39
第二章 實驗部分 44
2-1 化合物名稱對照 45
2-2實驗藥品 49
2-3 實驗儀器 52
2-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR);Bruker AVANCE 300 / 500 MHz 52
2-3-2 高解析質譜儀 (High Resolution Mass Spectrometer, HRMS);Bruker, New ultrafleXtremeTM ; autoflex ; HRMS 53
2-3-3 紫外光 / 可見光吸收光譜 (Ultraviolet Visible Near-infare Spectrophotometer, UV/VIS/NIR Spectrophotometer); UH5700 型 53
2-3-4 示差熱掃描卡計 (Differential Scanning Calorimeter, DSC);METTLER TOLEDO DSC 1 54
2-3-5 熱重分析儀 (Thermal Gravimetric Analyer, TGA); Perkin Elmer TGA 55 54
2-3-6 電化學裝置 (Electrochemical Analyzer / Work- station);HCH Instrumentent Model 621C 55
2-3-7 X光單晶繞射儀 (Single Crystal X-ray Diffractometer,SXRD);Rigaku XtaLAB Synergy DW 55
2-4 合成步驟 56
3,3'-dibromo-2,2'-bithiophene (10) 之合成 56
[2,2‘-bithiophene]-3,3’-dicarboxylic acid (11) 之合成 56
dithieno[3,2-c:2',3'-e]oxepine-4,6-dione (12) 之合成 57
5-(2-ethylhexyl)-4H-dithieno[3,2-c:2',3'-e]azepine-4,6(5H)-dione (14) 之合成 58
3‘-((2-ethylhexyl)carbamoyl)-[2,2’-bithiophene]-3-carboxylic acid (13) 之合成 58
5-(2-ethylhexyl)-4H-dithieno[3,2-c:2',3'-e]azepine-4,6(5H)-dione (14) 之合成 59
2,8-dibromo-5-(2-ethylhexyl)-4H-dithieno[3,2-c:2‘,3’-e]azepine-4,6(5H)-dione (15) 之合成 59
5-(2-hexyldecyl)-4H-dithieno[3,2-c:2',3'-e]azepine-4,6(5H)-dione (20) 之合成 60
3‘-((2-hexadecyl)carbamoyl)-[2,2’-bithiophene]-3-carboxylic acid (19) 之合成 61
5-(2-hexyldecyl)-4H-dithieno[3,2-c:2',3'-e]azepine-4,6(5H)-dione (20) 之合成 61
2,8-dibromo-5-(2-ethylhexyl)-4H-dithieno[3,2-c:2‘,3’-e]azepine-4,6(5H)-dione (21) 之合成 62
2-hexyldecan-1-amine (18) 之合成 62
7-(bromomethyl)pentadecane (16) 之合成 63
2-(2-hexyldecyl)isoindoline-1,3-dione (17) 之合成 63
2-hexyldecan-1-amine (18) 之合成 64
4-Bromo-N,N-bis(4-methoxyphenyl)aniline (22) 之合成 64
4-methoxy-N-(4-methoxyphenyl)-N-(4-(tributylstannyl) phenyl)aniline (23) 之合成 65
2-(4-(bis(4-methoxyphenyl)amino)phenyl)-8-bromo-5-(2-ethylhexyl)-4H-dithieno[3,2-c:2',3'-e]azepine-4,6(5H)-dione (24) 之合成 66
2-(4-(bis(4-methoxyphenyl)amino)phenyl)-8-bromo-5-(2-hexyldecyl)-4H-dithieno[3,2-c:2',3'-e]azepine-4,6(5H)-dione (28) 之合成 67
2-(5-bromothiophen-2-yl)-1,3-dioxolane (25) 之合成 68
5-(1,3-dioxolan-2-yl)thiophen-2-yl)tributylstannane (26) 之合成 68
5-(8-(4-(bis(4-methoxyphenyl)amino)phenyl)-5-(2-ethylhexyl)-4,6-dioxo-5,6-dihydro-4H-dithieno[3,2-c:2',3'-e]azepin-2-yl)thiophene-2-carbaldehyde (27) 之合成 69
5-(8-(4-(bis(4-methoxyphenyl)amino)phenyl)-5-(2-hexyldecyl)-4,6-dioxo-5,6-dihydro-4H-dithieno[3,2-c:2',3'-e]azepin-2-yl)thiophene-2-carbaldehyde (29) 之合成 70
BTI-8-CA (1) 之合成 71
BTI-16-CA (1’) 之合成 73
BTI-8-PE (2) 之合成 74
BTI-16-PE (2’) 之合成 76
BTI-8-PA (3) 之合成 78
BTI-16-PA (3’) 之合成 80
4'-(bis(4-methoxyphenyl)amino)-[1,1'-biphenyl]-4-carbaldehyde (30) 之合成 82
TPA-P-PE (4) 之合成 83
TPA-P-PA (5) 之合成 84
5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophene-2-carbaldehyde (31) 之合成 86
TPA-T-PE (6) 之合成 87
TPA-T-PA (7) 之合成 88
selenophene-2-carbaldehyde (32) 之合成 90
5-bromoselenophene-2-carbaldehyde (33) 之合成 91
5-(4-(bis(4-ethoxyphenyl)amino)phenyl)selenophene-2-carbaldehyde (34) 之合成 92
TPA-Sp-PE (8) 之合成 93
TPA-Sp-PA (9) 之合成 95
第三章 結果與討論 97
3-1 有機光電材料之光學性質探討 98
3-1-1 電洞傳輸層材料 (BTI-based SAMs) 98
3-1-2 電洞傳輸層材料 (Ar-based SAMs) 101
3-2 有機光電材料之電化學性質探討 104
3-2-1 電洞傳輸層材料 (BTI-based SAMs) 104
3-2-2 電洞傳輸層材料 (Ar-based SAMs) 108
3-3 有機光電材料之熱穩定性分析 111
3-3-1 電洞傳輸層材料 (BTI-based SAMs) 112
3-3-2 電洞傳輸層材料 (Ar-based SAMs) 115
3-4 有機光電材料之晶體結構分析 118
3-4-1 電洞傳輸層材料 (Ar-based SAMs) 118
第四章 結論 122
附錄 124
參考文獻 175
Becquerel, E. C. R. Acad. Sci. 1839, 9, 561–567.
Chapin, D. M.; Fuller, C. S.; Pearson, G. L. Journal of Applied Physics 1954, 25, 676-677.
https://www.nrel.gov/pv/cell-efficiency.htmL
Green, M. A.; Dunlop, E. D.; Siefer, G.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hao, X. Prog. Photovolt. Res. Appl. 2023, 3, 3−16.
Saga, T. NPG Asia Mater. 2010, 2, 96–102.
https://www.solarfeeds.com/mag/wiki/copper-indium-gallium-selenide/
(a) https://technews.tw/2019/03/11/identify-high-performing-solar-materials/
(b)https://www.ctci.org.tw/media/1920/%E6%9C%89%E6%A9%9F-opv-%E5%A4%AA%E9%99%BD%E5%85%89%E9%9B%BB%E6%8A%80%E8%A1%93-1-%E6%9B%B9%E6%AD%A3%E7%86%99.pdf
(c) https://www.re.org.tw/news/more.aspx?cid=200&id=1515
Mazhari, B. Sol. Energ Mat. Sol. C. 2006, 90, 1021-1033.
Boudreault, P. L. T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456-469.
Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374-380.
https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?id=0000435088_XHQL92TO9P12QI7YPV1N3
Chen, Y.; Zhang, L.; Zhang, Y.; Gao, H.; Yan, H. RSC Adv. 2018, 8, 10489-10508.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050-6051.
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Sci. Rep. 2012, 2, 1-7.
Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G.; Shin, T. J.; Il Seok, S. Nature 2021, 598 (7881), 444-450.
Hu, H. J.; Zhou, H. M.; Cai, X. B.; Tian, X. Y.; Reiss, P.; Xu, B. M.; Kirchartz, T.; Xiao, Z. G.; Dai, S. Y.; Park, N. G.; Ye, J.; Pan, X. Nature. 2023, 624, 557–563.
Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Grätzel, M. Photovolt. Spec. Conf. 2014, 1563–1566.
Anaraki, E. H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Grätzel, M. Energy Environ. Sci. 2016, 9, 3128–3134.
Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542–546.
Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. J. Photonics Energy, 2016, 6, 022001.
Huang, L.; Xu, J.; Sun, X.; Du, Y.; Cai, H.; Ni, J.; Li, J.; Hu, Z.; Zhang, J. ACS Appl. Mater. 2016, 8, 9811.
Marinova, N.; Valero, S.; Delgado, J. L.; Colloid, J. Interface Sci. 2017, 488, 373.
Xi, H.; Tang, S.; Ma, X.; Chang, J.; Chen, D.; Lin, Z.; Zhong, P.; Wang, H.; Zhang, C. ACS Omega. 2017, 2, 326–336.
Hawash, Z.; Ono L. K.; Qi, Y. Adv. Mater. Interfaces, 2016, 3, 1600117.
Wang, S.; Huang, Z.; Wang, X.; Li, Y.; Günther, M.; Valenzuela, S.; Parikh, P.; Cabreros, A.; Xiong, W.; Meng, Y. S. J. Am. Chem. Soc. 2018, 140, 16720– 16730.
Guo, P.; Dong, J.; Xu, C.; Yao, Y.; You, J.; Bian, H.; Zeng, W.; Zhou, G.; He, X.; Wang, M.; Zhou, X.; Wang, M.; Song, Q., Journal of Materials Chemistry A 2023, 11 (13), 7246-7255.
Kuan, C. H.; Luo, G. S.; Narra, S.; Maity, S.; Hiramatsu, H.; Tsai, Y. W.; Lin, J. M.; Hou, C. H.; Shyue, J. J.; Diau, W. G. Chemical Engineering Journal 2022, 450.
Wijeyasinghe, N.; Regoutz, A.; Eisner, F.; Du, T.; Tsetseris, L.; Lin, Y. H.; Faber, H.; Pattanasattayavong, P.; Li, J.; Yan, F.; McLachlan, M. A.; Payne, D. J.; Heeney, M.; Anthopoulos, T. D. Adv. Funct. Mater. 2017, 27, 1701818.
Christians, J. A.; Fung, R. C. M.; Kamat, P. V. J. Am. Chem. Soc. 2014, 136, 758–764.
Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M. K.; Grätzel, M. Nat. Commun. 2014, 5, 4834.
Hussain, I.; Tran, H. P.; Jaksik, J. Emergent Mater. 2018, 1, 133–154.
Ji, X.; Feng, K.; Ma, S.; Wang, J.; Liao, Q.; Wang, Z.; Li, B.; Huang, J.; Sun, H.; Wang, K.; Guo, X. ACS Nano 2022, 16, 11902.
Tan, Q.; Li, Z.; Luo, G. Nature. 2023, 620, 545–551.
Chen, J.; Luo, J.; Hou, E. Nat. Photon. 2024, 18, 464–470.
Wang, Z.; Hamada, K.; Nishimura, K.; Shen, Q.; Toyoda, T.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S. J. Phys. Chem. Lett. 2019, 10, 5277– 5283.
Ke, W.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe, C. M. M.; Marks, T. J.; Chen, M.; Kanatzidis, M. G.; J. Am. Chem. Soc. 2018, 140, 388.
Vegiraju, S.; Ke, W.; Priyanka, P.; Ni, J. S.; Wu, Y. C.; Spanopoulos, I.; Yau, S. L. Marks, T. J.; Chen, M. C.; Kanatzidis, M. G. Adv. Funct. Mater. 2019, 190539.
Kuan, C. H.; Rajendiran, B.; Hsu, S. M.; Ni, J. S.; Tsai, Y. T.; Zhang, Z. X.;Chen, M. -C.; Diau, E. W. G. Adv. Mater. 2023, 2300681.
Rajendiran Balasaravanan, C. H. K.; Hsu, S. M.; Chang, E. C.; Chen, Y. C.; Tsai, T. Y.; Jhou, M. L.; Yau, S. L.; Liu, C. L.; Chen, M. -C.; Diau, E. W. G. Adv. Energy Mater. 2023, 13, 2302047.
Casalini, S.; Bortolotti, C.A.; Leonardi, F.; Biscarini, F. Chem. Soc. Rev. 2017, 46, 40–71.
Batdelger, A.; Lee, S.G.; Park, S.G. ChemElectroChem 2023, 10, e202300040.
Almasabi, K.; Zheng, X.; Turedi, B.; Alsalloum, A.Y.; Lintangpradipto, M.N.; Yin, J.; Gutiérrez-Arzaluz, L.; Kotsovos, K.; Jamal,A.; Gereige, I. ACS Energy Lett. 2023, 8, 950–956.
Wang, Z.; Lin, H.; Zhang, X.; Li, J.; Chen, X.;Wang, S.; Gong, W.; Yan, H.; Zhao, Q.; Lv, W. Sci. Adv. 2021, 7, 8555.
Ali, F.; Roldán-Carmona, C.; Sohail, M.; Nazeeruddin, M. K. Adv. Energy Mater. 2020, 10, 2002989.
Kim, S. Y.; Cho, S. J.; Byeon, S. E.; He, X.; Yoon, H. J. Adv. Energy Mater. 2020, 10, 2002606.
Jiang, W. L.; Li, F. Z.; Li, M. L.; Qi, F.; Lin,F. R.; Jen K. Y. Alex. Angew. Chem. Int. Ed. 2022, 61, e202213560.
Liu, M.; Bi, L.; Jiang, W.; Adv Mater. 2023, 35(46), 2304415.
Li, Z.; Sun, X.; Zheng, X.; Li, B.; Gao, D.; Zhang, S.; Wu, X.; Li. S. Science. 2023, 382, 284–289.
Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 9679– 9694.
Afraj, S. N.; Kuan, C. H.; Lin, J. S.; Ni, J. S.; Velusamy, A.; Chen, M. C.; Diau, E. W. G. Adv. Funct. Mater. 2023, 33, 2213939.
Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.; Yao, X.; Feng, X.; Zhang, X. J. Am. Chem. Soc. 2020, 142, 16632– 16643.
Guo, R.; Zhang, X.; Zheng, X.; Li, L.; Li, M.; Zhao, Y.; Li, X. Advanced Functional Materials, 2023, 33(10), 2211955.
Zhang, S.; Wu, R. H.; Mu, C. K.; Wang, Y. B.; Han, L. Y.; Wu, Y. Z.; Zhu. ACS Materials Letters. 2022 4 , 1976-1983.
Wu, R. H.; Liu, Z. H.; Ning, Z. J.; Neher, D.; Han, L, Y.; Lin, Y.; Tian, H.; Chen, W.; Stolterfoht, M.; Zhang, L. J.; Zhu, W. H.; Wu, Y. Z. Science 2023, 380, 404-409.
Kini, G. P.; Parashar, M. J.; Shuklab, V. K.; Singh, R. Sustainable Energy Fuels. 2021, 5, 5994–6003.
電子全文 電子全文(網際網路公開日期:20290630)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top