|
1. Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). Thelithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292–308. 2. Long, W., Fang, B., Ignaszak, A., Wu, Z., Wang, Y.-J., & Wilkinson, D. (2017). Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chemical Society Reviews, 46(23), 7176–7190. 3. Liu, C., Li, F., Ma, L.-P., & Cheng, H.-M. (2010). Advanced Materials for Energy Storage. Advanced Materials, 22(8), E28–E62. 4. Shao, Y., El-Kady, M. F., Sun, J., Li, Y., Zhang, Q., Zhu, M., Wang, H., Dunn, B., & Kaner, R. B. (2018). Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 118(18), 9233–9280. 5. Li, J., Du, Z., Ruther, R. E., AN, S. J., David, L. A., Hays, K., Wood, M., Phillip, N. D., Sheng, Y., Mao, C., Kalnaus, S., Daniel, C., & Wood, D. L. (2017). Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. JOM, 69(9), 1484–1496. 6. Korthauer, R. (2018). Lithium-Ion Batteries: Basics and Applications. Springer. 7. Goodenough, J. B. (2007). Cathode materials: A personal perspective. Journal of Power Sources, 174(2), 996–1000. 8. Kim, T., Song, W., Son, D.-Y., Ono, L. K., & Qi, Y. (2019). Lithium-ion batteries: Outlook on present, future, and hybridized technologies. Journal of Materials Chemistry A, 7(7), 2942–2964. 9. Darbar, D., Malkowski, T., Self, E. C., Bhattacharya, I., Reddy, M. V. V., & Nanda, J. (2022). An overview of cobalt-free, nickel-containing cathodes for Li-ion batteries. Materials Today Energy, 30, 101173. 10. Fergus, J. W. (2010). Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 195(4), 939–954. 11. Armand, M., Axmann, P., Bresser, D., Copley, M., Edström, K., Ekberg, C., Guyomard, D., Lestriez, B., Novák, P., Petranikova, M., Porcher, W., Trabesinger, S., Wohlfahrt-Mehrens, M., & Zhang, H. (2020). Lithium-ion batteries – Current state of the art and anticipated developments. Journal of Power Sources, 479, 228708. 12. Noh, H.-J., Youn, S., Yoon, C. S., & Sun, Y.-K. (2013). Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources, 233, 121–130. 13. Cheng, H., Shapter, J. G., Li, Y., & Gao, G. (2021). Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 57, 451–468. 14. Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., Liang, Z., He, X., Li, X., Tavajohi, N., & Li, B. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83–99. 15. Wu, Y. P., Rahm, E., & Holze, R. (2003). Carbon anode materials for lithium ion batteries. Journal of Power Sources, 114(2), 228–236. 16. Patil, R. S., Khandelwal, A., Kim, K. Y., Hariharan, K. S., & Kolake, S. M. (2019). Model Based Design of Composite Carbonaceous Anode for Li-Ion Battery for Fast Charging Applications. Journal of The Electrochemical Society, 166(6), A1185–A1196. 17. Review on recent progress of nanostructured anode materials for Li-ion batteries. (2014). Journal of Power Sources, 257, 421–443. 18. Nzereogu, P. U., Omah, A. D., Ezema, F. I., Iwuoha, E. I., & Nwanya, A. C. (2022). Anode materials for lithium-ion batteries: A review. Applied Surface Science Advances, 9, 100233. 19. Saravanan, K., Ananthanarayanan, K., & Balaya, P. (2010). Mesoporous TiO2 with high packing density for superior lithium storage. Energy & Environmental Science, 3(7), 939–948. 20. Wang, X., Wang, J., Chen, Z., Yang, K., Zhang, Z., Shi, Z., Mei, T., Qian, J., Li, J., & Wang, X. (2020). Yolk-double shell Fe3O4@C@C composite as high-performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 822, 153656. 21. Xu, W., Canfield, N. L., Wang, D., Xiao, J., Nie, Z., & Zhang, J.-G. (2010). A three-dimensional macroporous Cu/SnO2 composite anode sheet prepared via a novel method. Journal of Power Sources, 195(21), 7403–7408. 22. Haregewoin, A. M., Wotango, A. S., & Hwang, B.-J. (2016). Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy Environ. Sci., 9(6), 1955–1988. 23. Zhang, S. S. (2006). A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 162(2), 1379–1394. 24. Wang, Q., Jiang, L., Yu, Y., & Sun, J. (2019). Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 55, 93–114. 25. Slater, M. D., Kim, D., Lee, E., & Johnson, C. S. (2013). Sodium‐Ion Batteries. Advanced Functional Materials, 23(8), 947–958. 26. Ma, S., Yan, W., Dong, Y., Su, Y., Ma, L., Li, Y., Fang, Y., Wang, B., Wu, S., Liu, C., Chen, S., Chen, L., Huang, Q., Wang, J., Li, N., & Wu, F. (2024). Recent advances in carbon-based anodes for high-performance sodium-ion batteries: Mechanism, modification and characterizations. Materials Today. 27. Chayambuka, K., Mulder, G., Danilov, D. L., & Notten, P. H. L. (2018). Sodium‐Ion Battery Materials and Electrochemical Properties Reviewed. Advanced Energy Materials, 8(16), 1800079. 28. Wang, Y., Qu, Q., Gao, S., Tang, G., Liu, K., He, S., & Huang, C. (2019). Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, 155, 706–726. 29. Liu, A., Liu, T.-F., Yuan, H.-D., Wang, Y., Liu, Y.-J., Luo, J.-M., Nai, J.-W., & Tao, X.-Y. (2022). A review of biomass-derived carbon materials for lithium metal anodes. New Carbon Materials, 37(4), 658–674. 30. Zhu, Z., & Xu, Z. (2020). The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews, 134, 110308. 31. Leng, L., & Huang, H. (2018). An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology, 270, 627–642. 32. Tekin, K., Karagöz, S., & Bektaş, S. (2014). A review of hydrothermal biomass processing. Renewable and Sustainable Energy Reviews, 40, 673–687. 33. Ukanwa, K., Patchigolla, K., Sakrabani, R., Anthony, E., & Mandavgane, S. (2019). A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass. Sustainability, 11(22), 6204. 34. He, H., Zhang, R., Zhang, P., Wang, P., Chen, N., Qian, B., Zhang, L., Yu, J., & Dai, B. (2023). Functional Carbon from Nature: Biomass‐Derived Carbon Materials and the Recent Progress of Their Applications. Advanced Science, 10(16), 2205557. 35. Wang, Y., Zhang, M., Shen, X., Wang, H., Wang, H., Xia, K., Yin, Z., & Zhang, Y. (2021). Biomass‐Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 17(40), 2008079. 36. Bi, Z., Kong, Q., Cao, Y., Sun, G., Su, F., Wei, X., Li, X., Ahmad, A., Xie, L., & Chen, C.-M. (2019). Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review. Journal of Materials Chemistry A, 7(27), 16028–16045. 37. Zhu, Z., Men, Y., Zhang, W., Yang, W., Wang, F., Zhang, Y., Zhang, Y., Zeng, X., Xiao, J., Tang, C., Li, X., & Zhang, Y. (2024). Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems. eScience, 100249. 38. Hong, Z., Zhen, Y., Ruan, Y., Kang, M., Zhou, K., Zhang, J., Huang, Z., & Wei, M. (2018). Rational Design and General Synthesis of S-Doped Hard Carbon with Tunable Doping Sites toward Excellent Na-Ion Storage Performance. Advanced Materials, 30(29), 1802035. 39. Chen, C., Huang, Y., Zhu, Y., Zhang, Z., Guang, Z., Meng, Z., & Liu, P. (2020). Nonignorable Influence of Oxygen in Hard Carbon for Sodium Ion Storage. ACS Sustainable Chemistry & Engineering, 8(3), 1497–1506. 40. Soltani, N., Bahrami, A., Giebeler, L., Gemming, T., & Mikhailova, D. (2021). Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Progress in Energy and Combustion Science, 87, 100929. 41. Wang, H., Cui, L.-F., Yang, Y., Sanchez Casalongue, H., Robinson, J. T., Liang, Y., Cui, Y., & Dai, H. (2010). Mn3O4−Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. Journal of the American Chemical Society, 132(40), 13978–13980. 42. Wang, B., Li, F., Wang, X., Wang, G., Wang, H., & Bai, J. (2019). Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries. Chemical Engineering Journal, 364, 57–69. 43. Wang, M., Huang, Y., Zhang, N., Wang, K., Chen, X., & Ding, X. (2018). A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes. Chemical Engineering Journal, 334, 2383–2391 44. Ren, K., Liu, Z., Wei, T., & Fan, Z. (2021). Recent Developments of Transition Metal Compounds-Carbon Hybrid Electrodes for High Energy/Power Supercapacitors. Nano-Micro Letters, 13(1), 129. 45. Shan, J., Wang, J., Zhao, Y., & Huang, J. (2019). Nitrogen-doped porous carbon/Mn3O4 composites as anode materials for lithium-ion batteries. Solid State Sciences, 92, 89–95. 46. Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444. 47. Song, B., Liang, Y., Zhou, Y., Zhang, L., Li, H., Zhu, N.-X., Tang, B. Z., Zhao, D., & Liu, B. (2024). CO2-Based Stable Porous Metal–Organic Frameworks for CO2 Utilization. Journal of the American Chemical Society. 48. Hu, Z., Peng, Y., Kang, Z., Qian, Y., & Zhao, D. (2015). A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorganic Chemistry, 54(10), 4862–4868. 49. Lee, E. J., Bae, J., Choi, K. M., & Jeong, N. C. (2019). Exploiting Microwave Chemistry for Activation of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 11(38), 35155–35161. 50. Liu, Y., Wei, Y., Liu, M., Bai, Y., Wang, X., Shang, S., Chen, J., & Liu, Y. (2021). Electrochemical Synthesis of Large Area Two-Dimensional Metal–Organic Framework Films on Copper Anodes. Angewandte Chemie International Edition, 60(6), 2887–2891. 51. Ploetz, E., Engelke, H., Lächelt, U., & Wuttke, S. (2020). The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 30(41), 1909062. 52. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186–10191. 53. Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O’Keeffe, M., & Yaghi, O. M. (2010). Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 43(1), 58–67. 54. Bibi, S., Pervaiz, E., & Ali, M. (2021). Synthesis and applications of metal oxide derivatives of ZIF-67: A mini-review. Chemical Papers, 75(6), 2253–2275. 55. Zhong, G., Liu, D., & Zhang, J. (2018). The application of ZIF-67 and its derivatives: Adsorption, separation, electrochemistry and catalysts. Journal of Materials Chemistry A, 6(5), 1887–1899. 56. Duan, C., Yu, Y., & Hu, H. (2022). Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy & Environment, 7(1), 3–15. 57. Shi, Z., Yu, Y., Fu, C., Wang, L., & Li, X. (2017). Water-based synthesis of zeolitic imidazolate framework-8 for CO2 capture. RSC Advances, 7(46), 29227–29232. 58. Ethiraj, J., Palla, S., & Reinsch, H. (2020). Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous and Mesoporous Materials, 294, 109867. 59. Sarawade, P., Tan, H., & Polshettiwar, V. (2013). Shape- and Morphology-Controlled Sustainable Synthesis of Cu, Co, and In Metal Organic Frameworks with High CO2 Capture Capacity. ACS Sustainable Chemistry & Engineering, 1(1), 66–74. 60. Li, W., Wang, K., Yang, X., Zhan, F., Wang, Y., Liu, M., Qiu, X., Li, J., Zhan, J., Li, Q., & Liu, Y. (2020). Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation. Chemical Engineering Journal, 379, 122256. 61. Sumida, K., Liang, K., Reboul, J., Ibarra, I. A., Furukawa, S., & Falcaro, P. (2017). Sol–Gel Processing of Metal–Organic Frameworks. Chemistry of Materials, 29(7), 2626–2645. 62. Yang, Q., Lu, R., Ren, S., Chen, C., Chen, Z., & Yang, X. (2018). Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water. Chemical Engineering Journal, 348, 202–211. 63. Babu, R., Roshan, R., Kathalikkattil, A. C., Kim, D. W., & Park, D.-W. (2016). Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. ACS Applied Materials & Interfaces, 8(49), 33723–33731. 64. Mahmoodi, N. M., Taghizadeh, M., Taghizadeh, A., Abdi, J., Hayati, B., & Shekarchi, A. A. (2019). Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media. Applied Surface Science, 480, 288–299. 65. Wang, L., Wang, Z., Xie, L., Zhu, L., & Cao, X. (2019). ZIF-67-Derived N-Doped Co/C Nanocubes as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 11(18), 16619–16628. 66. Cui, L., Qi, H., Wang, N., Gao, X., Song, C., Yang, J., Wang, G., Kang, S., & Chen, X. (2022). N/S co-doped CoSe/C nanocubes as anode materials for Li-ion batteries. Nanotechnology Reviews, 11(1), 244–251. 67. Zhang, Z., Huang, Y., Gao, X., Xu, Z., & Wang, X. (2020). Rational Design of Hierarchically Structured CoS2 @NCNTs from Metal–Organic Frameworks for Efficient Lithium/Sodium Storage Performance. ACS Applied Energy Materials, 3(7), 6205–6214. 68. Scrosati, B., Hassoun, J., & Sun, Y.-K. (2011). Lithium-ion batteries. A look into the future. Energy & Environmental Science, 4(9), 3287. 69. Bai, S., Tan, G., Li, X., Zhao, Q., Meng, Y., Wang, Y., Zhang, Y., & Xiao, D. (2016). Pumpkin‐Derived Porous Carbon for Supercapacitors with High Performance. Chemistry – An Asian Journal, 11(12), 1828–1836. 70. Bunaciu, A. A., Udriştioiu, E. G., & Aboul-Enein, H. Y. (2015). X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry, 45(4), 289–299. 71. Raman spectroscopy. (2024). In Wikipedia. 72. Bardestani, R., Patience, G. S., & Kaliaguine, S. (2019). Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 97(11), 2781–2791. 73. Inkson, B. J. (2016). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods (pp. 17–43). Elsevier. 74. Choi, W., Shin, H.-C., Kim, J. M., Choi, J.-Y., & Yoon, W.-S. (2020). Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 11(1), 1–13. 75. Rafiee, M., Abrams, D. J., Cardinale, L., Goss, Z., Romero-Arenas, A., & Stahl, S. S. (2024). Cyclic voltammetry and chronoamperometry: Mechanistic tools for organic electrosynthesis. Chemical Society Reviews, 53(2), 566–585. 76. McDonald-Wharry, J., Manley-Harris, M., & Pickering, K. (2013). Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy. Carbon, 59, 383–405. 77. Roberts, A. D., Li, X., & Zhang, H. (2014). Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev., 43(13), 4341–4356. 78. Xiao, B., Rojo, T., & Li, X. (2019). Hard Carbon as Sodium‐Ion Battery Anodes: Progress and Challenges. ChemSusChem, 12(1), 133–144. 79. Wang, L.-H., Ren, L.-L., Qin, Y.-F., Chen, J., Chen, H.-Y., Wang, K., Liu, H.-J., Huang, Z., & Li, Q. (2022). Preparation of Mn3O4 Nanoparticles via Precipitation in Presence of CTAB Molecules and Its Application as Anode Material for Lithium Ion Batteries. International Journal of Electrochemical Science, 17(2), 220221. 80. Ahmed, F., Almutairi, G., Hasan, P., Rehman, S., Kumar, S., Shaalan, N., Alkhateeb Aljaafari, A., Alshoaibi, A., AlOtaibi, B., & Khan, K. (2023). Fabrication of a Biomass-Derived Activated Carbon-Based Anode for High-Performance Li-Ion Batteries. Micromachines, 14, 192. 81. An, Y., Zhang, W., Zhang, X., Zhong, Y., Ding, L., Hao, Y., White, M., Chen, Z., An, Z., & Wang, X. (2023). Adsorption Recycling and High-Value Reutilization of Heavy-Metal Ions from Wastewater: As a High-Performance Anode Lithium Battery. Langmuir, 39(35), 12324–12335. 82. Simões dos Reis, G., Mayandi Subramaniyam, C., Cárdenas, A. D., Larsson, S. H., Thyrel, M., Lassi, U., & García-Alvarado, F. (2022). Facile Synthesis of Sustainable Activated Biochars with Different Pore Structures as Efficient Additive-Carbon-Free Anodes for Lithium- and Sodium-Ion Batteries. ACS Omega, 7(46), 42570–42581. 83. Jiang, Q., Ni, Y., Zhang, Q., Gao, J., Wang, Z., Yin, H., Jing, Y., & Wang, J. (2022). Sustainable Nitrogen Self-Doped Carbon Nanofibers from Biomass Chitin as Anodes for High-Performance Lithium-Ion Batteries. Energy & Fuels, 36(7), 4026–4033. 84. Panda, M. R., Kathribail, A. R., Modak, B., Sau, S., Dutta, D. P., & Mitra, S. (2021). Electrochemical properties of biomass-derived carbon and its composite along with Na2Ti3O7 as potential high-performance anodes for Na-ion and Li-ion batteries. Electrochimica Acta, 392, 139026. 85. Nagaraja, P., Rao, H. S., Pamidi, V., Umeshbabu, E., Rao, G. R., & Justin, P. (2023). Mn3O4 nano-octahedrons embedded in nitrogen-doped graphene oxide as potent anode material for lithium-ion batteries. Ionics, 29(7), 2587–2598. 86. Weng, S.-C., Brahma, S., Huang, P.-C., Huang, Y.-C., Lee, Y.-H., Chang, C.-C., & Huang, J.-L. (2020). Enhanced capacity and significant rate capability of Mn3O4/reduced graphene oxide nanocomposite as high performance anode material in lithium-ion batteries. Applied Surface Science, 505, 144629. 87. Thauer, E., Shi, X., Zhang, S., Chen, X., Deeg, L., Klingeler, R., Wenelska, K., & Mijowska, E. (2021). Mn3O4 encapsulated in hollow carbon spheres coated by graphene layer for enhanced magnetization and lithium-ion batteries performance. Energy, 217, 119399. 88. Han, X., Cui, Y., & Liu, H. (2020). Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries. Journal of Alloys and Compounds, 814, 152348. 89. Varghese, S. P., Babu, B., Prasannachandran, R., Antony, R., & Shaijumon, M. M. (2019). Enhanced electrochemical properties of Mn3O4/graphene nanocomposite as efficient anode material for lithium ion batteries. Journal of Alloys and Compounds, 780, 588–596. 90. Zhou, J., Lin, N., Cai, W. L., Guo, C., Zhang, K., Zhou, J., Zhu, Y., & Qian, Y. (2016). Synthesis of S/CoS2 Nanoparticles-Embedded N-doped Carbon Polyhedrons from Polyhedrons ZIF-67 and their Properties in Lithium-Sulfur Batteries. Electrochimica Acta, 218, 243–251. 91. Lu, X., Liu, A., Zhang, Y., & Liu, S. (2021). A yolk-shell structured CoS2@NC@CNC with double carbon shell coating from confined derivatization of ZIF-67 growth in carbon nanocages for superior Li storage. Electrochimica Acta, 371, 137773. 92. He, B., Li, G., Chen, L., Chen, Z., Jing, M., Zhou, M., Zhou, N., Zeng, J., & Hou, Z. (2018). A facile N doping strategy to prepare mass-produced pyrrolic N-enriched carbon fibers with enhanced lithium storage properties. Electrochimica Acta, 278, 106–113. 93. Yan, J., Huang, Y., Han, X., Gao, X., & Liu, P. (2019). Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Composites Part B: Engineering, 163, 67–76. 94. Zhang, J., Yu, L., & Lou, X. W. D. (2017). Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Research, 10(12), 4298–4304. 95. Wang, Q., Zou, R., Xia, W., Ma, J., Qiu, B., Mahmood, A., Zhao, R., Yang, Y., Xia, D., & Xu, Q. (2015). Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries. Small, 11(21), 2511–2517. 96. Wang, Q., Jiao, L., Han, Y., Du, H., Peng, W., Huan, Q., Song, D., Si, Y., Wang, Y., & Yuan, H. (2011). CoS2 Hollow Spheres: Fabrication and Their Application in Lithium-Ion Batteries. The Journal of Physical Chemistry C, 115(16), 8300–8304.
|