跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張晨渝
研究生(外文):Chen-Yu Chang
論文名稱:通過多醣表面修飾增強隱形眼鏡的親水性和抗菌性能
論文名稱(外文):Enhancing the Hydrophilicity and Antibacterial Properties of Contact Lenses through Polysaccharide Surface Modification
指導教授:黃貞翰
指導教授(外文):Chen-Han Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:生醫科學與工程學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:76
中文關鍵詞:隱形眼鏡表面修飾抗蛋白質吸附濕潤性親水性接觸角
外文關鍵詞:Contact LensSurface ModificationAnti-Protein AdhesionWettabilityHydrophilicityContact angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著隱形眼鏡的廣泛,由於其固有的潤濕性差而導致眼部併發症的相關風險構成了重大挑戰。隱形眼鏡每日貼附在角膜上,空氣中或雙手上的微生物均有機會因鏡片清潔不足而入侵眼睛,導致眼角膜發炎、疼痛等受損情況。因此,隱形眼鏡需具有抗菌性的功能,來維持眼睛的健康。眼睛乾澀是目前配戴隱形眼鏡最常面臨的問題,伴隨著鏡片上的沉澱物(淚液中的蛋白質和脂質),會造成視覺對比度的下降,使配戴不舒適而減少配戴時間。
為了解決這些問題,我們採用多醣體對隱形眼鏡進行表面改接觸繳過應用這些多醣,我們的目標是製造具有增強耐用性的多層抗菌膜,從而改善隱形眼鏡和眼表之間的相互作用。這種修改旨在引入更具生物相容性和對眼睛友好的親水層。我們的研究涉及一系列全面的評估,以評估多醣改質對隱形眼鏡的影響,特別注重其潤濕性、抗菌功效和抗蛋白質黏附能力。
綜合以上考量,隱形眼鏡不僅需要具備抗菌性以維持眼睛健康,還需具備抗蛋白沉積功能以增加配戴者的舒適度。我們的研究目的是藉由多醣體表面改質,提供更好的潤濕性、抗菌性和抗蛋白質黏附性,從而全面提升隱形眼鏡的性能和使用體驗。
With the widespread adoption of contact lenses, the associated risks of ocular complications due to their inherent poor wettability present a significant challenge. Contact lenses, worn daily on the cornea, are susceptible to microbial invasion from the air or hands if not properly cleaned, leading to corneal inflammation, pain, and other damages. Therefore, contact lenses need antibacterial properties to maintain eye health. Dry eyes are the most common issue faced by contact lens wearers today, accompanied by deposits on the lenses (proteins and lipids from tears), which reduce visual contrast and cause discomfort, leading to shorter wear times.
To address these issues, we use polysaccharides to modify the surface of contact lenses. We aim to create durable, multilayer antibacterial films that enhance the interaction between the contact lens and the ocular surface by applying these polysaccharides. This modification is designed to introduce a more biocompatible and eye-friendly hydrophilic layer. Our research involves a comprehensive evaluation to assess the impact of polysaccharide modification on contact lenses, focusing on wettability, antibacterial efficacy, and resistance to protein adhesion.
In summary, contact lenses need antibacterial properties to maintain eye health and anti-protein deposition functionality to enhance wearer comfort. Our research aims to use polysaccharide surface modifications to provide better wettability, antibacterial properties, and resistance to protein adhesion, thereby comprehensively improving contact lenses' performance and user experience.
Abstract in Chinese i
Abstract ii
Acknowledgments iii
1. Introduction 1
1.1 Research Background 1
1.2 Research Purpose 2
1.3 Development History of Contact Lenses 3
1.4 Classification of contact lenses 4
1.5 Polymer Surface Modification 6
1.6 Manufacturing methods of contact lenses 7
1.7 Layer-by-layer assembly 9
1.8 About Chitosan (CHI) 10
1.9 About Carboxymethylcellulose (CMC) 11
1.10 About Branched polyethylenimine (BPEI) 13
1.10 About EDC/NHS 14
1.11 About Glutaraldehyde (GA) 16
2. Materials and Methods 18
2.1 Materials 18
2.1.1 Reagent and Brand 18
2.1.2 Equipment 18
2.2 Methods 19
2.2.1 Experimental Process 19
2.2.2 Experimental principle and methods 19
2.2.2.1 Experimental principle 19
2.2.2.2 Experimental Methods-modification 20
2.2.2.3 Experimental Methods- Contact angle 22
2.2.2.4 Experimental Methods- Spectral transmittance 24
2.2.2.5 Experimental Methods- Water content 25
2.2.2.6 Experimental Methods- Mechanical properties 26
2.2.2.7 Experimental Methods- Oxygen permeability 26
2.2.2.8 Experimental Methods- Thickness 30
2.2.2.9 Experimental Methods-Refractive index 31
2.2.2.10 Experimental Methods- Lens appearance and visual clarity 32
2.2.2.11 Experimental Methods-Protein Adsorption Assay 35
2.2.2.12 Experimental Methods- Antimicrobial Assay 36
2.2.2.13 Experimental Methods-Cytotoxicity test 37
3. Result 39
3.1 Contact angle 39
3.2 Spectral transmittance 45
3.3 Water content 46
3.4 Mechanical properties 47
3.5 Oxygen permeability 48
3.6 Refractive Index 52
3.7 Lens appearance and visual clarity 53
3.8 Thickness 57
3.9 Protein Adsorption Assay 57
3.10Antimicrobial Assay 59
3.11 Cytotoxicity test 60
4. Conclusion 63
5. Reference 66
1. Holden, B. A., Fricke, T. R., Wilson, D. A., Jong, M., Naidoo, K. S., Sankaridurg, P., ... & Resnikoff, S. (2016). Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology, 123(5), 1036-1042.
2. Morgan, I. G., Ohno-Matsui, K., & Saw, S. M. (2012). Myopia. The Lancet, 379(9827), 1739-1748.
3. Nichols, J. J., Willcox, M. D., Bron, A. J., Belmonte, C., Ciolino, J. B., Craig, J. P., ... & Sullivan, D. A. (2013). The TFOS International Workshop on Contact Lens Discomfort: executive summary. Investigative Ophthalmology & Visual Science, 54(11), TFOS7-TFOS13.
4. Efron, N., Morgan, P. B., & Helland, M. (2020). Incidence and morbidity of contact lens-related microbial keratitis in a defined population over a 5-year period. Investigative Ophthalmology & Visual Science, 61(6), 7-7.
5. Fonn, D., & Jones, L. (2019). Hand hygiene is linked to microbial keratitis and corneal inflammatory events. Optometry and Vision Science, 96(3), 167-173.
6. Stapleton, F., Stretton, S., Papas, E., Skotnitsky, C., & Sweeney, D. F. (2006). Silicone hydrogel contact lenses and the ocular surface. Ocular Surface, 4(1), 24-43.
7. Guillon, M., & Maissa, C. (2005). Dry eye symptomatology of soft contact lens wearers and nonwearers. Optometry and Vision Science, 82(9), 829-834.
8. Kojima, T. (2013). Contact lens wear and dry eye: perspectives from Japan. Eye & Contact Lens, 39(1), 65-70.
9. Jones, L., Brennan, N. A., González-Méijome, J., Lally, J., Maldonado-Codina, C., Schmidt, T. A., ... & Young, G. (2021). The TFOS International Workshop on Contact Lens Discomfort: report of the contact lens interactions with the ocular surface subcommittee. Investigative Ophthalmology & Visual Science, 62(6), TFOS27-TFOS58.
10. Willcox, M. D., Holden, B. A., & Sweeney, D. F. (2001). The pathogenesis of contact lens-related microbial keratitis. Eye & Contact Lens, 27(2), 109-113.
11. Stapleton, F., & Carnt, N. (2012). Contact lens-related microbial keratitis: how have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye, 26(2), 185-193.
12. Radford, C. F., Minassian, D. C., & Dart, J. K. G. (2002). Acanthamoeba keratitis in England and Wales: incidence, outcome, and risk factors. British Journal of Ophthalmology, 86(5), 536-542.
13. Sweeney, D. F. (2013). Have silicone hydrogel lenses eliminated hypoxia?. Eye & Contact Lens, 39(1), 53-60.
14. Sarkyt Kudaibergenov, Gulnur Tatykhanova, Nurlan Bakranov, Rosa Tursunova. "Layer-by-Layer Thin Films and Coatings Containing Metal Nanoparticles in Catalysis." Reviewed: 12 December 2016. Published: 12 April 2017.
15. Xianlong Zhang, Yang Xu, Xuan Zhang, Hong Wu, Jiabin Shen, Rong Chen, Ying Xiong, Jiang Li, Shaoyun Guo. "Progress on the layer-by-layer assembly of multilayered polymercomposites: Strategy, structural control and applications."
16. Shuang Zhao, Frank Caruso, Lars Dähne, Gero Decher, Bruno G. De Geest, Jinchen Fan, Neus Feliu, Yury Gogotsi, Paula T. Hammond, Mark C. Hersam, Ali Khademhosseini, Nicholas Kotov, Stefano Leporatti, Yan Li, Fred Lisdat, Luis M. Liz-Marzán, Sergio Moya, Paul Mulvaney, Andrey L. Rogach, Sathi Roy, Dmitry G. Shchukin, Andre G. Skirtach, Molly M. Stevens, Gleb B. Sukhorukov, Paul S. Weiss, Zhao Yue, Dingcheng Zhu, Wolfgang J. Parak. "The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Möhwald."
17. Inmaculada Aranaz, Andrés R. Alcántara, Maria Concepción Civera, Concepción Arias, Begoña Elorza, Angeles Heras Caballero, Niuris Acosta. "Chitosan: An Overview of Its Properties and Applications."
18. Zhonghui Chen, Ziyu Lv, Yifeng Sun, Zhenguo Chi, Guangyan Qing, "Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications," Journal of Materials Chemistry B, Royal Society of Chemistry. DOI: 10.1039/C9TB02271F.
19. Cuie Wang, Qin Yan, Hong-Bo Liu, Xiao-Hui Zhou, Shou-Jun Xiao. "Different EDC/NHS Activation Mechanisms between PAA and PMAA Brushes and the Following Amidation Reactions."
20. Alina Sionkowska, Karolina Kulka-Kamińska, Patrycja Brudzyńska, Katarzyna Lewandowska, Łukasz Piwowarski. "The Influence of Various Crosslinking Conditions of EDC/NHS on the Properties of Fish Collagen Film."
21. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. PMID: 15560135 DOI: 10.2144/04375RV01
22. Zhaodi Zhang1 & Yuan Liu1 & Shudong Lin2 & Qi Wang . "Preparation and properties of glutaraldehyde crosslinked poly(vinyl alcohol) membrane with gradient structure"
23. Hyejoong Jeong, Young-Ah Cho, Younghyun Cho, Eunah Kang, Hyo-Won Ahn, Jinkee Hong. "Durable Urushiol-Based Nanofilm with Water Repellency for Clear Overlay Appliances in Dentistry."
24. Desmond Fonn. "Targeting Contact Lens Induced Dryness and Discomfort: What Properties Will Make Lenses More Comfortable." School of Optometry, University of Waterloo, Waterloo, ON, Canada.
25. Caleb R. Horst, Benjamin Brodland, Lyndon W. Jones, G. Wayne Brodland. "Measuring the Modulus of Silicone Hydrogel Contact Lenses."
26. Tarnveer Singh Bhamra, Brian J. Tighe. "Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development." Biomaterials Research Unit, Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
27. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, D. C. Klenk. "Measurement of Protein Using Bicinchoninic Acid."
28. Nguyen-Phuong-Dung Tran, Ming-Chien Yang, Nur Hasanah, Phuong Lan Tran-Nguyen. "Effect of poly(ethylene glycol) methacrylate on the ophthalmic properties of silicone hydrogel contact lenses."
29. ISO 18369 Ophthalmic optics Contact lenses.
30. ISO 10993 Biological evaluation of medical devices.
31. JIS Z 2801 Test for Antimicrobial Activity of Plastics.
32. ASTM E2149-20 Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions
33. Andrade, J. D., & Hlady, V. (1987). Protein adsorption and materials biocompatibility: A tutorial review and suggested hypotheses. Advances in Polymer Science, 79, 1-63. DOI: 10.1007/3-540-18734-1_1
34. Busscher, H. J., & Van der Mei, H. C. (1997). Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Advances in Dental Research, 11(1), 24-32. DOI: 10.1177/08959374970110010901
35. Ivanova, E. P., Hasan, J., Webb, H. K., Truong, V. K., Watson, G. S., Watson, J. A., ... & Crawford, R. J. (2012). Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small, 8(16), 2489-2494. DOI: 10.1002/smll.201200528
36. Yixian Zhang, Dong Wang, Ying Xu , Li Wen ,Jian Dong , and Liming Wang.Enhancement of the Surface Hydrophilicity of Poly(VinylChloride) Using Hyperbranched Polylysine with Polydopamine.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊