|
bibliography [1] V. C. Rubin, W. K. Jr. Ford, and N. Thonnard. “A New Light Boson?” In: Astrophysical Journal (1978). D O I: 10.1086/182804. [2] R. D. Peccei and Helen R. Quinn. “CP Conservation in the Presence of Pseudoparticles”. In: Phys. Rev. Lett. 38 (25 1977), pp. 1440–1443. D O I: 10.1103/ PhysRevLett.38.1440. U R L: https://link.aps.org/doi/10.1103/ PhysRevLett.38.1440. [3] Steven Weinberg. “A New Light Boson?” In: Phys. Rev. Lett. 40 (4 1978), pp. 223– 226. D O I: 10.1103/PhysRevLett.40.223. U R L: https://link.aps. org/doi/10.1103/PhysRevLett.40.223. [4] F. Wilczek. “Problem of Strong P and T Invariance in the Presence of Instantons”. In: Phys. Rev. Lett. 40 (5 1978), pp. 279–282. D O I: 10.1103/PhysRevLett.40. 279. U R L: https://link.aps.org/doi/10.1103/PhysRevLett.40. 279. [5] Jihn E. Kim. “Weak Interaction Singlet and Strong CP Invariance”. In: Phys. Rev. Lett. 43 (1979), p. 103. D O I: 10.1103/PhysRevLett.43.103. [6] Mikhail A. Shifman, A. I. Vainshtein, and Valentin I. Zakharov. “Can Confinement Ensure Natural CP Invariance of Strong Interactions?” In: Nucl. Phys. B 166 (1980), pp. 493–506. D O I: 10.1016/0550-3213(80)90209-6. [7] Michael Dine, Willy Fischler, and Mark Srednicki. “A Simple Solution to the Strong CP Problem with a Harmless Axion”. In: Phys. Lett. B 104 (1981), pp. 199– 202. D O I: 10.1016/0370-2693(81)90590-6. [8] A. R. Zhitnitsky. “On Possible Suppression of the Axion Hadron Interactions. (In Russian)”. In: Sov. J. Nucl. Phys. 31 (1980), p. 260. [9] A. RINGWALD. “AXIONS AND AXION-LIKE PARTICLES”. In: PNAS (2013). [10] a J. Gal´an. “Exploring 0.1–10 eV axions with a new helioscope concept”. In: JCAP12(2015)012 (2015). [11] C. Hagmann et al. “Results from a High-Sensitivity Search for Cosmic Axions”. In: Phys. Rev. Lett. 80 (10 1998), pp. 2043–2046. D O I: 10.1103/PhysRevLett. 80.2043. U R L: https://link.aps.org/doi/10.1103/PhysRevLett. 80.2043. [12] S. J. Asztalos et al. “Experimental Constraints on the Axion Dark Matter Halo Density”. In: The Astrophysical Journal 571.1 (2002), pp. L27–L30. D O I: 10.1086/ 341130. U R L: https://doi.org/10.1086/341130. [13] S. J. Asztalos et al. “Improved rf cavity search for halo axions”. In: Phys. Rev. D 69 (1 2004), 011101 (R). D O I: 10.1103/PhysRevD.69.011101. U R L: https: //link.aps.org/doi/10.1103/PhysRevD.69.011101. [14] S. J. Asztalos et al. “SQUID-Based Microwave Cavity Search for Dark-Matter Axions”. In: Phys. Rev. Lett. 104 (4 2010), p. 041301. D O I: 10.1103/PhysRevLett. 104.041301. U R L: https://link.aps.org/doi/10.1103/PhysRevLett. 104.041301. [15] N. Du et al. “Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment”. In: Phys. Rev. Lett. 120 (15 2018), p. 151301. D O I: 10.1103/ PhysRevLett . 120 . 151301. U R L: https : / / link . aps . org / doi / 10 . 1103/PhysRevLett.120.151301. [16] T. Braine et al. “Extended Search for the Invisible Axion with the Axion Dark Matter Experiment”. In: Phys. Rev. Lett. 124 (10 2020), p. 101303. D O I: 10.1103/ PhysRevLett . 124 . 101303. U R L: https : / / link . aps . org / doi / 10 . 1103/PhysRevLett.124.101303. [17] C. Bartram et al. “Search for Invisible Axion Dark Matter in the 3.3–4.2 µeV Mass Range”. In: Phys. Rev. Lett. 127.26 (2021), p. 261803. D O I: 10 . 1103 / PhysRevLett.127.261803. [18] S. Lee et al. “Axion Dark Matter Search around 6.7 µeV”. In: Phys. Rev. Lett. 124.10 (2020), p. 101802. D O I: 10.1103/PhysRevLett.124.101802. arXiv: 2001.05102 [hep-ex]. [19] Junu Jeong et al. “Search for Invisible Axion Dark Matter with a Multiple-Cell Haloscope”. In: Phys. Rev. Lett. 125.22 (2020), p. 221302. D O I: 10.1103/PhysRevLett. 125.221302. arXiv: 2008.10141 [hep-ex]. [20] Ohjoon Kwon et al. “First Results from an Axion Haloscope at CAPP around 10.7 µeV”. In: Phys. Rev. Lett. 126 (19 2021), p. 191802. D O I: 10.1103/PhysRevLett. 126.191802. U R L: https://link.aps.org/doi/10.1103/PhysRevLett. 126.191802. [21] K. M. Backes et al. “A quantum enhanced search for dark matter axions”. In: Nature 590.7845 (2021), 238–242. I S S N: 1476-4687. D O I: 10.1038/s41586-021- 03226-7. U R L: http://dx.doi.org/10.1038/s41586-021-03226-7. [22] B. M. Brubaker et al. “First results from a microwave cavity axion search at 24 µeV”. In: Phys. Rev. Lett. 118.6 (2017), p. 061302. D O I: 10.1103/PhysRevLett. 118.061302. arXiv: 1610.02580 [astro-ph.CO]. [23] L. Zhong et al. “Results from phase 1 of the HAYSTAC microwave cavity axion experiment”. In: Phys. Rev. D 97.9 (2018), p. 092001. D O I: 10.1103/PhysRevD. 97.092001. arXiv: 1803.03690 [hep-ex]. [24] Hsin Chang et al. “First Results from the Taiwan Axion Search Experiment with a Haloscope at 19.6 µeV”. In: Phys. Rev. Lett. (2022). D O I: 10.1103/PhysRevLett. 129.111802. [25] NJ Neta A Bahcall Princeton. “Dark-matter QCD-axion searches.” In: arXiv:1407.0546v1 (2014). [26] N. Crisosto et al. “Results from a Superconducting LC Circuit Investigating Cold Axions”. In: Phys. Rev. Lett. (2019). [27] L. Brouwer et al. “Projected Sensitivity of DMRadio: A Search for the QCD Axion Below 1 µeV ”. In: Phys. Rev. Lett. (2022). [28] Jonathan L. Ouellet et al. “Design and Implementation of the ABRACADABRA-10 cm Axion Dark Matter Search”. In: (2019). [29] Antoine Garcon et al. “Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance”. In: (2019). [30] Jonathan Ouellet and Zachary Bogorad. “Solutions to axion electrodynamics in various geometries”. In: (2019). D O I: 10.1103/PhysRevD.99.055010. [31] N. Crisosto, N. S. Sullivan P. Sikivie, and D. B. Tanner. “ADMX SLIC: Results from a Superconducting LC Circuit Investigating Cold Axions”. In: (2020). D O I: 10.1103/PhysRevLett.124.241101. [32] CalculateInductance. In: (). U R L: https://www.qsl.net/in3otd/ind2calc. html. [33] PTFE. In: (). U R L: https://catalog.wshampshire.com/Asset/psg_ teflon_ptfe.pdf. [34] PEEK. In: (). U R L: https://tw.misumi-ec.com/pdf/fa/2015/p2_981. pdf. [35] PureCopper. In: (). U R L: https://www.engineeringtoolbox.com/materialproperties-t_24.html. [36] Hsin Chang et al. “TASEH: A haloscope axion search experiment”. In: (May 2022). arXiv: 2205.01477 [physics.ins-det]. U R L: https://arxiv.org/abs/ 2205.01477. [38] Mini-Circuits. In: (). U R L: https://www.minicircuits.com/WebStore/ dashboard.html?model=ZX60-3018G-S%2B. [39] Inc. Cosmic Microwave Technology. In: (). U R L: https://www.cosmicmicrowavetechnocom/citlf2. [40] P. Sikivie, N. Sullivan, and D. B. Tanner. “Proposal for Axion Dark Matter Detection Using an LC Circuit”. In: Phys. Rev. Lett. (2014). D O I: 10.1103/PhysRevLett. 112.131301.
|