跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 19:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃允德
研究生(外文):Yun-De Huang
論文名稱(外文):Bacterial chemotaxis in random environment
指導教授:陳宣毅陳宣毅引用關係
指導教授(外文):Hsuan-Yi Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:48
中文關鍵詞:大腸桿菌環境趨向性
外文關鍵詞:E. colibacterialchemotaxis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
細菌演化出奔跑(run)和翻滾(tumble)這兩種不同的運動模式,以便找到更有利的生存環境。這些運動狀態主要由內部蛋白質控制。除此之外研究上觀察到,奔跑和翻滾的細菌在固體邊界處表現出特別的運動行為。在本篇論文中,模擬趨向化細菌在具有固定隨機圓形障礙物的二維環境中的運動,來研究細菌在其自然環境中遇到的隨機固體邊界的影響。結果顯示,當障礙物邊界之間的平均距離足夠小時,固體邊界的影響使得細菌更有利於找到合適的生存環境。另一方面,在障礙物密度較小的情況下,隨著障礙物密度的增加趨化運動變慢。障礙物邊界之間存在一個平均臨界距離,在此距離時趨向化運動具有最小的平均速度。我們的結果提出了一種透過操縱環境的障礙物密度來控制細菌行為的方法。
Run-and-tumble bacteria have evolved two distinct modes of movement in order to navigate toward more favorable living environments. These movement states are primarily controlled by internal proteins. Additionally, it has been observed that run-and-tumble bacteria exhibit distinctive moving behaviors at solid boundaries. In this thesis, the motion of a chemotactic bacterium in a two-dimensional environment with immobile random circular obstacles is simulated to study the effect of random solid boundaries that a bacterium encounters in its natural environment. The results show that when the average distance between the obstacle walls is sufficiently small, the influence of the solid boundaries makes it more advantageous for bacteria to find a suitable environment for survival. On the other hand, the chemotactic motion in the limit of small densities of obstacles is slower as the density of obstacles increases. There is a critical average distance between the obstacle walls at which the chemotactic motion has the smallest average velocity. Our results suggest a way to control bacterial behavior by manipulating the randomness of the environment.
1 Introduction 1
1.1 acterium-wall interaction 5
2 Model 6
2.1 Equations of motion 6
2.2 Transitions between different moving states 7
2.3 Receptor activation and methylation level 8
2.4 Arranging solid disks in the simulation box 11
3 Results: average velocity of run-and-tumble particles in random environments 17
3.1 elocity and Effective Channel Width 17
3.2 Two possible mechanisms that leads to the vx − Weff relation at Weff < Wth 19
3.2.1 Total tumbling time versus Weff 20
3.2.2 Path length versus Weff 21
3.3 Probability of moving toward regions with higher chemoattractant concentration 22
4 Summary 27
Armitage, J. P., & Lackie, J. M. (1981). Biology of the chemotactic response. Cambridge University Press.
Lupas, A., & Stock, J. (1989). Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. Journal of Biological Chemistry, 264(29), 17337-17342.
Berg, H. C. (2000). Motile behavior of bacteria. Physics today, 53(1), 24-29.
Hess, J. F., Bourret, R. B., & Simon, M. I. (1988). Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature, 336(6195), 139-143.
Barak, R., & Eisenbach, M. (1992). Correlation between phosphorylation of the chemotaxis protein CheY and its activity at the flagellar motor. Biochemistry, 31(6), 1821-1826.
Welch, M., Oosawa, K., Aizawa, S. L., & Eisenbach, M. (1993). Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proceedings of the National Academy of Sciences, 90(19), 8787-8791.
Anand, G. S., Goudreau, P. N., & Stock, A. M. (1998). Activation of methylesterase CheB: evidence of a dual role for the regulatory domain. Biochemistry, 37(40), 14038-14047.
Lupas, A., \& Stock, J. (1989). Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. Journal of Biological Chemistry, 264(29), 17337-17342.
Bacon, F. (1965). On the nature of allosteric transitions: a plausible model. J Mol Biol, 12(1), 88-118.
Tu, Y. (2013). Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. Annual review of biophysics, 42(1), 337-359.
Routh, E. J. (1898). A treatise on dynamics of a particle. Cambridge University Press.
Vladimirov, N., Løvdok, L., Lebiedz, D., & Sourjik, V. (2008). Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLoS computational biology, 4(12), e1000242.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top