|
Bibliography [1] Tsunenobu Kimoto. Material science and device physics in SiC technology for high-voltage power devices. Japanese Journal of Applied Physics , 54(4): 040103, mar 2015. doi: 10.7567/jjap.54.040103. URL https://doi.org/ 10.7567%2Fjjap.54.040103 . [2] Shiqi Ji, Zheyu Zhang, and Fred Wang. Overview of high voltage sic power semiconductor devices: development and application. CES Trans- actions on Electrical Machines and Systems , 1(3):254–264, sep 2017. doi: 10.23919/tems.2017.8086104. URL https://doi.org/10.23919%2Ftems. 2017.8086104 . [3] Stephen Saddow. Silicon carbide technology for advanced human healthcare applications. Micromachines , 13(3):346, feb 2022. doi: 10.3390/mi13030346. URL https://doi.org/10.3390%2Fmi13030346 . [4] Joice Sophia Ponraj, Sathish Chander Dhanabalan, Giovanni Attolini, and Giancarlo Salviati. SiC nanostructures toward biomedical applications and its future challenges. Critical Reviews in Solid State and Materials Sci- ences , 41(5):430–446, may 2016. doi: 10.1080/10408436.2016.1150806. URL https://doi.org/10.1080%2F10408436.2016.1150806 . [5] Mian Li, Xiaobing Zhou, Hui Yang, Shiyu Du, and Qing Huang. The critical issues of SiC materials for future nuclear systems. Scripta Materialia , 143: 149–153, jan 2018. doi: 10.1016/j.scriptamat.2017.03.001. URL https: //doi.org/10.1016%2Fj.scriptamat.2017.03.001 . 118[6] Yutai Katoh, Lance L. Snead, Izabela Szlufarska, and William J. Weber. Radiation eff ects in SiC for nuclear structural applications. Current Opinion in Solid State and Materials Science , 16(3):143–152, jun 2012. doi: 10.1016/ j.cossms.2012.03.005. URL https://doi.org/10.1016%2Fj.cossms.2012. 03.005 . [7] Renbing Wu, Kun Zhou, Chee Yoon Yue, Jun Wei, and Yi Pan. Recent progress in synthesis, properties and potential applications of SiC nanoma- terials. Progress in Materials Science , 72:1–60, jul 2015. doi: 10.1016/ j.pmatsci.2015.01.003. URL https://doi.org/10.1016%2Fj.pmatsci. 2015.01.003 . [8] Michael Huff . Review paper: Residual stresses in deposited thin-film material layers for micro- and nano-systems manufacturing. Microma- chines , 13(12):2084, nov 2022. doi: 10.3390/mi13122084. URL https: //doi.org/10.3390%2Fmi13122084 . [9] A Lohrmann, B C Johnson, J C McCallum, and S Castelletto. A review on single photon sources in silicon carbide. Reports on Progress in Physics , 80 (3):034502, jan 2017. doi: 10.1088/1361-6633/aa5171. URL https://doi. org/10.1088%2F1361-6633%2Faa5171 . [10] Stefania Castelletto and Alberto Boretti. Silicon carbide color centers for quantum applications. Journal of Physics: Photonics , 2(2):022001, mar 2020. doi: 10.1088/2515-7647/ab77a2. URL https://doi.org/10.1088% 2F2515-7647%2Fab77a2 . [11] S. Nakashima and H. Harima. Raman investigation of SiC poly- types. physica status solidi (a) , 162(1):39–64, jul 1997. doi: 10.1002/1521-396x(199707)162:1<39::aid-pssa39>3.0.co;2-l. URL https://doi.org/10.1002%2F1521-396x%28199707%29162%3A1%3C39% 3A%3Aaid-pssa39%3E3.0.co%3B2-l . [12] Hiroshi Harima. Raman scattering characterization on SiC. Microelectronic 119Engineering , 83(1):126–129, jan 2006. doi: 10.1016/j.mee.2005.10.037. URL https://doi.org/10.1016%2Fj.mee.2005.10.037 . [13] R. T. Holm, P. H. Klein, and P. E. R. Nordquist. Infrared refl ectance evaluation of chemically vapor deposited β -SiC fi lms grown on Si substrates. Journal of Applied Physics , 60(4):1479–1485, aug 1986. doi: 10.1063/1. 337275. URL https://doi.org/10.1063%2F1.337275 . [14] Z. C. Feng, A. Rohatgi, C. C. Tin, R. Hu, A. T. S. Wee, and K. P. Se. Structural, optical, and surface science studies of 4H-SiC epilayers grown by low pressure chemical vapor deposition. Journal of Electronic Materials , 25 (5):917–923, may 1996. doi: 10.1007/bf02666658. URL https://doi.org/ 10.1007%2Fbf02666658 . [15] Mingkun Zhang, Jun Huang, Rongdun Hong, Xiaping Chen, and Zhengyun Wu. Annealing eff ects on structural, optical and electrical properties of al implanted 4H-SiC. In 2009 IEEE International Conference of Electron De- vices and Solid-State Circuits (EDSSC) . IEEE, dec 2009. doi: 10.1109/edssc. 2009.5394252. URL https://doi.org/10.1109%2Fedssc.2009.5394252 . [16] Ernst Abbe. Ueber einen neuen beleuchtungsapparat am mikroskop. Archiv für mikroskopische Anatomie , 9(1):1873, 1873. [17] EdwardH Synge. Xxxviii. a suggested method for extending microscopic resolution into the ultra-microscopic region. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science , 6(35):356–362, 1928. [18] Dieter W Pohl, Winfried Denk, and Mark Lanz. Optical stethoscopy: Image recording with resolution λ /20. Applied physics letters , 44(7):651–653, 1984. [19] Bert Hecht, Beate Sick, Urs P Wild, Volker Deckert, Renato Zenobi, Olivier JF Martin, and Dieter W Pohl. Scanning near-fi eld optical mi- croscopy with aperture probes: Fundamentals and applications. The Jour- nal of Chemical Physics , 112(18):7761–7774, 2000. 120[20] John David Jackson. Classical electrodynamics; 2nd ed. Wiley, New York, NY, 1975. [21] Keisuke Imaeda, Seiju Hasegawa, and Kohei Imura. Imaging of plasmonic eigen modes in gold triangular mesoplates by near-fi eld optical microscopy. The Journal of Physical Chemistry C , 122(13):7399–7409, 2018. [22] Susil Baral, Ali Rafi ei Miandashti, and Hugh H Richardson. Near-fi eld thermal imaging of optically excited gold nanostructures: scaling principles for collective heating with heat dissipation into the surrounding medium. Nanoscale , 10(3):941–948, 2018. [23] Lifu Xiao and Zachary D Schultz. Spectroscopic imaging at the nanoscale: Technologies and recent applications. Analytical chemistry , 90(1):440, 2018. [24] Fritz Keilmann and Rainer Hillenbrand. Near-fi eld microscopy by elastic light scattering from a tip. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences , 362 (1817):787–805, apr 2004. doi: 10.1098/rsta.2003.1347. URL https://doi. org/10.1098%2Frsta.2003.1347 . [25] S. Amarie and F. Keilmann. Broadband-infrared assessment of phonon resonance in scattering-type near-fi eld microscopy. Physical Review B , 83 (4), jan 2011. doi: 10.1103/physrevb.83.045404. URL https://doi.org/ 10.1103%2Fphysrevb.83.045404 . [26] Xinzhong Chen, Debo Hu, Ryan Mescall, Guanjun You, DN Basov, Qing Dai, and Mengkun Liu. Modern scattering-type scanning near-fi eld optical microscopy for advanced material research. Advanced Materials , 31(24): 1804774, 2019. [27] Jeff rey J Schwartz, Devon S Jakob, and Andrea Centrone. A guide to nanoscale ir spectroscopy: resonance enhanced transduction in contact and tapping mode afm-ir. Chemical Society Reviews , 51(13):5248–5267, 2022. 121[28] Jeremie Mathurin, Ariane Deniset-Besseau, Dominique Bazin, Emmanuel Dartois, Martin Wagner, and Alexandre Dazzi. Photothermal afm-ir spec- troscopy and imaging: Status, challenges, and trends. Journal of Applied Physics , 131(1), 2022. [29] Chiao-Tzu Wang, Bei Jiang, Ya-Wei Zhou, Tian-Wen Jiang, Jian-Hua Liu, Guo-Dong Zhu, and Wen-Bin Cai. Exploiting the surface-enhanced IR absorption eff ect in the photothermally induced resonance AFM-IR technique toward nanoscale chemical analysis. Analytical Chemistry , 91 (16):10541–10548, jul 2019. doi: 10.1021/acs.analchem.9b01554. URL https://doi.org/10.1021%2Facs.analchem.9b01554 . [30] Luca Quaroni. Understanding and controlling spatial resolution, sensitiv- ity, and surface selectivity in resonant-mode photothermal-induced reso- nance spectroscopy. Analytical Chemistry , 92(5):3544–3554, feb 2020. doi: 10.1021/acs.analchem.9b03468. URL https://doi.org/10.1021%2Facs. analchem.9b03468 . [31] Abid Anjum Sifat, Junghoon Jahng, and Eric O Potma. Photo-induced force microscopy (pifm)–principles and implementations. Chemical Society Reviews , 51(11):4208–4222, 2022. [32] Josh A Davies-Jones and Philip R Davies. Photo induced force microscopy: chemical spectroscopy beyond the diff raction limit. Materials Chemistry Frontiers , 6(12):1552–1573, 2022. [33] F Zenhausern, MP O’boyle, and HK Wickramasinghe. Apertureless near- fi eld optical microscope. Applied Physics Letters , 65(13):1623–1625, 1994. [34] MAXIMILIAN BREUER, MATTHIAS HANDLOSER, TOPTICA PHO- TONICS AG, TOBIAS GOKUS, et al. Nano-ftir spectroscopy reveals ma- terial’s true nature, 2018. [35] Lingfeng M Zhang, Gregory O Andreev, Zhe Fei, Alexander S McLeod, Gerardo Dominguez, Mark Thiemens, AH Castro-Neto, DN Basov, and 122Michael M Fogler. Near-fi eld spectroscopy of silicon dioxide thin fi lms. Phys- ical Review B , 85(7):075419, 2012. [36] Tobias Steinle, Florian Mörz, Andy Steinmann, and Harald Giessen. Ultra- stable high average power femtosecond laser system tunable from 1.33 to 20 µ m. Optics Letters , 41(21):4863–4866, 2016. [37] Peter Hermann, Arne Hoehl, Georg Ulrich, Claudia Fleischmann, Antje Hermelink, Bernd Kästner, Piotr Patoka, Andrea Hornemann, Burkhard Beckhoff , Eckart Rühl, et al. Characterization of semiconductor materials using synchrotron radiation-based near-fi eld infrared microscopy and nano- ftir spectroscopy. Optics express , 22(15):17948–17958, 2014. [38] DJ Lahneman, TJ Huff man, Peng Xu, SL Wang, T Grogan, and MM Qazil- bash. Broadband near-fi eld infrared spectroscopy with a high temperature plasma light source. Optics Express , 25(17):20421–20430, 2017. [39] Martin Wagner, Devon S Jakob, Steve Horne, Henry Mittel, Sergey Os- echinskiy, Cassandra Phillips, Gilbert C Walker, Chanmin Su, and Xiaoji G Xu. Ultrabroadband nanospectroscopy with a laser-driven plasma source. ACS Photonics , 5(4):1467–1475, 2018. [40] Ilan Stefanon, Sylvain Blaize, Aurélien Bruyant, Sébastien Aubert, Gilles Lerondel, Renaud Bachelot, and Pascal Royer. Heterodyne detection of guided waves using a scattering-type scanning near-fi eld optical microscope. Optics express , 13(14):5553–5564, 2005. [41] Lewis Gomez, Renaud Bachelot, Alexandre Bouhelier, Gary P Wiederrecht, Shih-hui Chang, Stephen K Gray, Feng Hua, Seokwoo Jeon, John A Rogers, Miguel E Castro, et al. Apertureless scanning near-fi eld optical microscopy: a comparison between homodyne and heterodyne approaches. JOSA B , 23 (5):823–833, 2006. [42] Nenad Ocelic, Andreas Huber, and Rainer Hillenbrand. Pseudoheterodyne detection for background-free near-fi eld spectroscopy. Applied Physics Let- ters , 89(10), 2006. 123[43] DE Tranca, C Stoichita, R Hristu, SG Stanciu, and GA Stanciu. A study on the image contrast of pseudo-heterodyned scattering scanning near-fi eld optical microscopy. Optics Express , 22(2):1687–1696, 2014. [44] Camilo Moreno, Javier Alda, Edward Kinzel, and Glenn Boreman. Phase imaging and detection in pseudo-heterodyne scattering scanning near-fi eld optical microscopy measurements. Applied optics , 56(4):1037–1045, 2017. [45] A Dazzi, R Prazeres, F Glotin, and JM Ortega. Local infrared microspec- troscopy with subwavelength spatial resolution with an atomic force micro- scope tip used as a photothermal sensor. Optics letters , 30(18):2388–2390, 2005. [46] Feng Lu, Mingzhou Jin, and Mikhail A Belkin. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nature photon- ics , 8(4):307–312, 2014. [47] Dmitry Kurouski, Alexandre Dazzi, Renato Zenobi, and Andrea Centrone. Infrared and raman chemical imaging and spectroscopy at the nanoscale. Chemical Society Reviews , 49(11):3315–3347, 2020. [48] Jérémie Mathurin, Elisabetta Pancani, Ariane Deniset-Besseau, Kevin Kjoller, Craig B Prater, Ruxandra Gref, and Alexandre Dazzi. How to unravel the chemical structure and component localization of individual drug-loaded polymeric nanoparticles by using tapping afm-ir. Analyst , 143 (24):5940–5949, 2018. [49] Le Wang, Haomin Wang, Martin Wagner, Yong Yan, Devon S Jakob, and Xiaoji G Xu. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy. Science advances , 3(6):e1700255, 2017. [50] Le Wang, Haomin Wang, and Xiaoji G. Xu. Principle and applications of peak force infrared microscopy. Chemical Society Reviews , 51(13):5268– 5286, 2022. doi: 10.1039/d2cs00096b. URL https://doi.org/10.1039% 2Fd2cs00096b . 124[51] I Rajapaksa, K Uenal, and H Kumar Wickramasinghe. Image force mi- croscopy of molecular resonance: A microscope principle. Applied physics letters , 97(7), 2010. [52] Junghoon Jahng, Jordan Brocious, Dmitry A. Fishman, Fei Huang, Xiaowei Li, Venkata Ananth Tamma, H. Kumar Wickramasinghe, and Eric Olaf Potma. Gradient and scattering forces in photoinduced force microscopy. Physical Review B , 90(15), oct 2014. doi: 10.1103/physrevb.90.155417. URL https://doi.org/10.1103%2Fphysrevb.90.155417 . [53] Junghoon Jahng, Dmitry A. Fishman, Sung Park, Derek B. Nowak, Will A. Morrison, H. Kumar Wickramasinghe, and Eric O. Potma. Linear and non- linear optical spectroscopy at the nanoscale with photoinduced force mi- croscopy. Accounts of Chemical Research , 48(10):2671–2679, oct 2015. doi: 10.1021/acs.accounts.5b00327. URL https://doi.org/10.1021%2Facs. accounts.5b00327 . [54] Mohammad Almajhadi and H. Kumar Wickramasinghe. Contrast and imag- ing performance in photo induced force microscopy. Optics Express , 25(22): 26923, oct 2017. doi: 10.1364/oe.25.026923. URL https://doi.org/10. 1364%2Foe.25.026923 . [55] Yi Huang, David Legrand, Rémi Vincent, Ekoué Athos Dogbe Foli, Derek Nowak, Gilles Lerondel, Renaud Bachelot, Thierry Taliercio, Franziska Barho, Laurent Cerutti, Fernando Gonzalez-Posada, Beng Kang Tay, and Aurelien Bruyant. Spectroscopic nanoimaging of all-semiconductor plas- monic gratings using photoinduced force and scattering type nanoscopy. ACS Photonics , 5(11):4352–4359, oct 2018. doi: 10.1021/acsphotonics. 8b00700. URL https://doi.org/10.1021%2Facsphotonics.8b00700 . [56] Brian T. O’Callahan, Jun Yan, Fabian Menges, Eric A. Muller, and Markus B. Raschke. Photoinduced tip–sample forces for chemical nanoimag- ing and spectroscopy. Nano Letters , 18(9):5499–5505, aug 2018. doi: 12510.1021/acs.nanolett.8b01899. URL https://doi.org/10.1021%2Facs. nanolett.8b01899 . [57] Derek Nowak, William Morrison, H. Kumar Wickramasinghe, Junghoon Jahng, Eric Potma, Lei Wan, Ricardo Ruiz, Thomas R. Albrecht, Kristin Schmidt, Jane Frommer, Daniel P. Sanders, and Sung Park. Nanoscale chemical imaging by photoinduced force microscopy. Science Advances , 2 (3), mar 2016. doi: 10.1126/sciadv.1501571. URL https://doi.org/10. 1126%2Fsciadv.1501571 . [58] Ryan A. Murdick, William Morrison, Derek Nowak, Thomas R. Albrecht, Junghoon Jahng, and Sung Park. Photoinduced force microscopy: A tech- nique for hyperspectral nanochemical mapping. Japanese Journal of Ap- plied Physics , 56(8S1):08LA04, jul 2017. doi: 10.7567/jjap.56.08la04. URL https://doi.org/10.7567%2Fjjap.56.08la04 . [59] Bin Ji, Ahmad Kenaan, Shan Gao, Jin Cheng, Daxiang Cui, Hao Yang, Jinglin Wang, and Jie Song. Label-free detection of biotoxins via a photo- induced force infrared spectrum at the single-molecular level. Analyst , 144 (20):6108–6117, 2019. [60] Junghoon Jahng, Eric O Potma, and Eun Seong Lee. Nanoscale spectro- scopic origins of photoinduced tip–sample force in the midinfrared. Proceed- ings of the National Academy of Sciences , 116(52):26359–26366, 2019. [61] Yue Zhao, Ziyu Yao, Christopher D Snow, Yanan Xu, Yao Wang, Dan Xiu, Laurence A Belfi ore, and Jianguo Tang. Stable fl uorescence of eu3+ complex nanostructures beneath a protein skin for potential biometric recognition. Nanomaterials , 11(9):2462, 2021. [62] Junghoon Jahng, Eric O. Potma, and Eun Seong Lee. Tip-enhanced ther- mal expansion force for nanoscale chemical imaging and spectroscopy in photoinduced force microscopy. Analytical Chemistry , 90(18):11054–11061, aug 2018. doi: 10.1021/acs.analchem.8b02871. URL https://doi.org/10. 1021%2Facs.analchem.8b02871 . 126[63] Bongsu Kim, Junghoon Jahng, Abid Sifat, Eun Seong Lee, and Eric O Potma. Monitoring fast thermal dynamics at the nanoscale through fre- quency domain photoinduced force microscopy. The Journal of Physical Chemistry C , 125(13):7276–7286, 2021. [64] Andrew C Tam. Applications of photoacoustic sensing techniques. Reviews of Modern Physics , 58(2):381, 1986. [65] Mohammad A Almajhadi, Syed Mohammad Ashab Uddin, and H Ku- mar Wickramasinghe. Observation of nanoscale opto-mechanical molecu- lar damping as the origin of spectroscopic contrast in photo induced force microscopy. Nature communications , 11(1):5691, 2020. [66] Gary E Sommargren. Optical heterodyne profi lometry. Applied Optics , 20 (4):610–618, 1981. [67] M Teresa Cuberes, HE Assender, G Andrew D Briggs, and OV Kolosov. Heterodyne force microscopy of pmma/rubber nanocomposites: nanomap- ping of viscoelastic response at ultrasonic frequencies. Journal of Physics D: Applied Physics , 33(19):2347, 2000. [68] Junghoon Jahng, Bongsu Kim, Eun Seong Lee, and Eric Olaf Potma. Quan- titative analysis of sideband coupling in photoinduced force microscopy. Physical Review B , 94(19), nov 2016. doi: 10.1103/physrevb.94.195407. URL https://doi.org/10.1103%2Fphysrevb.94.195407 . [69] Abeer Al Mohtar. Localized surface plasmon and phonon polaritons inves- tigated by mid-infrared spectroscopy and near-fi eld nanoscopy . PhD thesis, Université de Technologie de Troyes; Université Libanaise, 2015. [70] George W Ford and Willes H Weber. Electromagnetic interactions of molecules with metal surfaces. Physics Reports , 113(4):195–287, 1984. [71] Simon Vassant, Jean-Paul Hugonin, Francois Marquier, and Jean-Jacques Greff et. Berreman mode and epsilon near zero mode. Optics express , 20 (21):23971–23977, 2012. 127[72] A. Cvitkovic, N. Ocelic, and R. Hillenbrand. Analytical model for quanti- tative prediction of material contrasts in scattering-type near-fi eld optical microscopy. Optics Express , 15(14):8550, 2007. doi: 10.1364/oe.15.008550. URL https://doi.org/10.1364%2Foe.15.008550 . [73] Alexander A Govyadinov, Iban Amenabar, Florian Huth, P Scott Carney, and Rainer Hillenbrand. Quantitative measurement of local infrared absorp- tion and dielectric function with tip-enhanced near-fi eld microscopy. The journal of physical chemistry letters , 4(9):1526–1531, 2013. [74] Amun Jarzembski and Keunhan Park. Finite dipole model for extreme near- fi eld thermal radiation between a tip and planar sic substrate. Journal of Quantitative Spectroscopy and Radiative Transfer , 191:67–74, 2017. [75] Fei Huang, Venkata Ananth Tamma, Zahra Mardy, Jonathan Burdett, and H. Kumar Wickramasinghe. Imaging nanoscale electromagnetic near-fi eld distributions using optical forces. Scientifi c Reports , 5(1), jun 2015. doi: 10.1038/srep10610. URL https://doi.org/10.1038%2Fsrep10610 . [76] Alexandre Dazzi, Francois Glotin, and Rémi Carminati. Theory of infrared nanospectroscopy by photothermal induced resonance. Journal of Applied Physics , 107(12), 2010. [77] Antonio Ambrosio, Luis A Jauregui, Siyuan Dai, Kundan Chaudhary, Michele Tamagnone, Michael M Fogler, Dimitri N Basov, Federico Capasso, Philip Kim, and William L Wilson. Mechanical detection and imaging of hyperbolic phonon polaritons in hexagonal boron nitride. ACS nano , 11(9): 8741–8746, 2017. [78] Jeff rey J Schwartz, Son T Le, Sergiy Krylyuk, Curt A Richter, AlbertV Davydov, and Andrea Centrone. Substrate-mediated hyperbolic phonon polaritons in moo3. Nanophotonics , 10(5):1517–1527, 2021. [79] R Hillenbrand and F Keilmann. Optical oscillation modes of plasmon parti- cles observed in direct space by phase-contrast near-fi eld microscopy. Applied Physics B , 73:239–243, 2001. 128[80] Pablo Alonso-Gonzalez, Martin Schnell, Paulo Sarriugarte, Heidar Sobhani, Chihhui Wu, Nihal Arju, Alexander Khanikaev, Federico Golmar, Pablo Albella, Libe Arzubiaga, et al. Real-space mapping of fano interference in plasmonic metamolecules. Nano letters , 11(9):3922–3926, 2011. [81] Pablo Alonso-González, Pablo Albella, Frank Neubrech, Christian Huck, Jianing Chen, Federico Golmar, Félix Casanova, Luis E Hueso, Annemarie Pucci, Javier Aizpurua, et al. Experimental verifi cation of the spectral shift between near-and far-fi eld peak intensities of plasmonic infrared nanoanten- nas. Physical review letters , 110(20):203902, 2013. [82] Yuancheng Xu, Eric Tucker, Glenn Boreman, Markus B Raschke, and Brian A Lail. Optical nanoantenna input impedance. ACS Photonics , 3 (5):881–885, 2016. [83] R Hillenbrand, T Taubner, and F Keilmann. Phonon-enhanced light–matter interaction at the nanometre scale. Nature , 418(6894):159–162, 2002. [84] A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand. Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling. Nano Letters , 6(4):774–778, mar 2006. doi: 10.1021/nl060092b. URL https: //doi.org/10.1021%2Fnl060092b . [85] Brian T O’Callahan, William E Lewis, Andrew C Jones, and Markus B Raschke. Spectral frustration and spatial coherence in thermal near-fi eld spectroscopy. Physical Review B , 89(24):245446, 2014. [86] Benedikt Hauer, Claire E. Marvinney, Martin Lewin, Nadeemullah A. Ma- hadik, Jennifer K. Hite, Nabil Bassim, Alexander J. Giles, Robert E. Stahlbush, Joshua D. Caldwell, and Thomas Taubner. Exploiting phonon- resonant near-fi eld interaction for the nanoscale investigation of extended defects. Advanced Functional Materials , 30(10), jan 2020. doi: 10.1002/ adfm.201907357. URL https://doi.org/10.1002%2Fadfm.201907357 . [87] Zhe Fei, AS Rodin, Gregory O Andreev, Wenzhong Bao, AS McLeod, M Wagner, LM Zhang, Zeng Zhao, M Thiemens, Gerardo Dominguez, et al. 129Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Na- ture , 487(7405):82–85, 2012. [88] Justin A Gerber, Samuel Berweger, Brian T O’Callahan, and Markus B Raschke. Phase-resolved surface plasmon interferometry of graphene. Phys- ical review letters , 113(5):055502, 2014. [89] Achim Woessner, Mark B Lundeberg, Yuanda Gao, Alessandro Prin- cipi, Pablo Alonso-González, Matteo Carrega, Kenji Watanabe, Takashi Taniguchi, Giovanni Vignale, Marco Polini, et al. Highly confi ned low-loss plasmons in graphene–boron nitride heterostructures. Nature materials , 14 (4):421–425, 2015. [90] S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov. Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride. Science , 343(6175):1125–1129, mar 2014. doi: 10.1126/science.1246833. URL https://doi.org/10.1126% 2Fscience.1246833 . [91] Debo Hu, Xiaoxia Yang, Chi Li, Ruina Liu, Ziheng Yao, Hai Hu, Stephanie N Gilbert Corder, Jianing Chen, Zhipei Sun, Mengkun Liu, et al. Probing optical anisotropy of nanometer-thin van der waals microcrystals by near- fi eld imaging. Nature communications , 8(1):1471, 2017. [92] Weiliang Ma, Pablo Alonso-González, Shaojuan Li, Alexey Y Nikitin, Jian Yuan, Javier Martín-Sánchez, Javier Taboada-Gutiérrez, Iban Amenabar, Peining Li, Saül Vélez, et al. In-plane anisotropic and ultra-low-loss polari- tons in a natural van der waals crystal. Nature , 562(7728):557–562, 2018. [93] Bongsu Kim, Junghoon Jahng, Abid Sifat, Eun Seong Lee, and Eric O Potma. Monitoring fast thermal dynamics at the nanoscale through fre- quency domain photoinduced force microscopy. The Journal of Physical Chemistry C , 125(13):7276–7286, 2021. 130[94] Jianxun Liu, Sung Park, Derek Nowak, Mengchuan Tian, Yanqing Wu, Hua Long, Kai Wang, Bing Wang, and Peixiang Lu. Near-fi eld characterization of graphene plasmons by photo-induced force microscopy. Laser & Photonics Reviews , 12(8):1800040, 2018. [95] Antonio Ambrosio, Michele Tamagnone, Kundan Chaudhary, Luis A Jau- regui, Philip Kim, William L Wilson, and Federico Capasso. Selective exci- tation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals. Light: Science & Applications , 7(1):27, 2018. [96] Michele Tamagnone, Antonio Ambrosio, Kundan Chaudhary, Luis A Jau- regui, Philip Kim, William L Wilson, and Federico Capasso. Ultra-confi ned mid-infrared resonant phonon polaritons in van der waals nanostructures. Science advances , 4(6):eaat7189, 2018. [97] Lars Mester, Alexander A Govyadinov, and Rainer Hillenbrand. High- fi delity nano-ftir spectroscopy by on-pixel normalization of signal harmonics. Nanophotonics , 11(2):377–390, 2021. [98] Jungseok Chae, Sangmin An, Georg Ramer, Vitalie Stavila, Glenn Holland, Yohan Yoon, A Alec Talin, Mark Allendorf, Vladimir A Aksyuk, and Andrea Centrone. Nanophotonic atomic force microscope transducers enable chem- ical composition and thermal conductivity measurements at the nanoscale. Nano letters , 17(9):5587–5594, 2017. [99] Mingkang Wang, Georg Ramer, Diego J Perez-Morelo, Georges Pavlidis, Jeff rey J Schwartz, Liya Yu, Robert Ilic, Vladimir A Aksyuk, and Andrea Centrone. High throughput nanoimaging of thermal conductivity and inter- facial thermal conductance. Nano Letters , 22(11):4325–4332, 2022. [100] Michele Tamagnone, Antonio Ambrosio, Kundan Chaudhary, Luis A Jau- regui, Philip Kim, William L Wilson, and Federico Capasso. Ultra-confi ned mid-infrared resonant phonon polaritons in van der waals nanostructures. Science advances , 4(6):eaat7189, 2018. 131[101] R.F. Davis. Silicon carbide. In Reference Module in Materials Science and Materials Engineering . Elsevier, 2017. ISBN 978-0-12-803581-8. doi: https://doi.org/10.1016/B978-0-12-803581-8.02445-0. URL https://www. sciencedirect.com/science/article/pii/B9780128035818024450 . [102] Tsunenobu Kimoto and James A Cooper. Fundamentals of silicon carbide technology: growth, characterization, devices and applications . John Wiley & Sons, 2014. [103] Moumita Mukherjee. Silicon Carbide: Materials, Processing and Applica- tions in Electronic Devices . BoD–Books on Demand, 2011. [104] JC Burton, L Sun, M Pophristic, SJ Lukacs, FH Long, ZC Feng, and IT Fer- guson. Spatial characterization of doped sic wafers by raman spectroscopy. Journal of Applied Physics , 84(11):6268–6273, 1998. [105] Hiroshi Harima, Shin-ichi Nakashima, and Tomoki Uemura. Raman scat- tering from anisotropic lo-phonon–plasmon–coupled mode in n-type 4h–and 6h–sic. Journal of applied physics , 78(3):1996–2005, 1995. [106] M Shamseddine, M Kazan, and M Tabbal. Model for the unpolarized in- frared refl ectivity from uniaxial polar materials: Eff ects of anisotropy, free carriers, and defects. Infrared Physics & Technology , 55(1):112–121, 2012. [107] M Kazan, L Ottaviani, E Moussaed, R Nader, and P Masri. Eff ect of introducing gettering sites and subsequent au diff usion on the thermal con- ductivity and the free carrier concentration in n-type 4h-sic. Journal of Applied Physics , 103(5), 2008. [108] Judy Chahal, N Rahbany, Y El-Helou, KT Wu, A Bruyant, C Zgheib, and M Kazan. Temperature dependence of the anisotropy of the infrared dielec- tric properties and phonon-plasmon coupling in n-doped 4H-SiC. Journal of Physics and Chemistry of Solids , 187:111861, 2024. [109] Oliver S Heavens. Optical properties of thin solid fi lms . Courier Corporation, 1991. 132[110] André Burneau, Odile Barres, Jean-Paul Gallas, and Jean-Claude Lavalley. Comparative study of the surface hydroxyl groups of fumed and precipitated silicas. 2. characterization by infrared spectroscopy of the interactions with water. Langmuir , 6(8):1364–1372, 1990. [111] Plinio Innocenzi, Paolo Falcaro, David Grosso, and Florence Babonneau. Order- disorder transitions and evolution of silica structure in self-assembled mesostructured silica fi lms studied through ftir spectroscopy. The Journal of Physical Chemistry B , 107(20):4711–4717, 2003. [112] Rui M Almeida and Carlo G Pantano. Structural investigation of silica gel fi lms by infrared spectroscopy. Journal of Applied Physics , 68(8):4225–4232, 1990. [113] N Delpuech, D Mazouzi, Nicolas Dupre, P Moreau, Manuella Cerbelaud, JS Bridel, J-C Badot, E De Vito, Dominique Guyomard, B Lestriez, et al. Critical role of silicon nanoparticles surface on lithium cell electrochemical performance analyzed by ftir, raman, eels, xps, nmr, and bds spectroscopies. The Journal of Physical Chemistry C , 118(31):17318–17331, 2014. [114] Junghoon Jahng, Eric O Potma, and Eun Seong Lee. Tip-enhanced ther- mal expansion force for nanoscale chemical imaging and spectroscopy in photoinduced force microscopy. Analytical chemistry , 90(18):11054–11061, 2018. [115] Sarath Patabendigedara, Derek Nowak, Mitchell JB Nancarrow, and Si- mon Martin Clark. Determining the water content of nominally anhydrous minerals at the nanometre scale. Review of Scientifi c Instruments , 92(2), 2021. [116] Lukas Novotny and Bert Hecht. Principles of nano-optics . Cambridge uni- versity press, 2012. [117] Michele Giocondo, Emanuela Bruno, Emmanuelle Lacaze, Luca De Stefano, Maria P De Santo, Paola Giardina, Said Houmadi, and Sara Longobardi. 133Atomic force spectroscopies: A toolbox for probing the biological matter. In Christopher Frewin, editor, Atomic Force Microscopy Investigations Into Biology: From Cell to Protein , chapter 1, pages 3–28. BoD–Books on De- mand, 2012. [118] Elisa Riedo, Francis Lévy, and Harald Brune. Kinetics of capillary conden- sation in nanoscopic sliding friction. Physical review letters , 88(18):185505, 2002. [119] Sacha Gómez-Monivas, Juan José Sáenz, Montserrat Calleja, and Ricardo García. Field-induced formation of nanometer-sized water bridges. Physical review letters , 91(5):056101, 2003. [120] Hanwei Wang, Sean M Meyer, Catherine J Murphy, Yun-Sheng Chen, and Yang Zhao. Visualizing ultrafast photothermal dynamics with decoupled optical force nanoscopy. Nature communications , 14(1):7267, 2023. [121] Gaël Gautier, Jérôme Biscarrat, Damien Valente, Thomas Deff orge, A Gary, and Frédéric Cayrel. Systematic study of anodic etching of highly doped n- type 4H-SiC in various hf based electrolytes. Journal of The Electrochemical Society , 160(9):D372, 2013. [122] Elise Usureau, Enora Vuillermet, Mihai Lazar, Aurore Andrieux, and Alexandre Jacquemot. High quality single crystal recrystallization of thin 4H-SiC fi lms deposed by pvd techniques, a way for new emerging fi elds. Solid State Phenomena , 343:21–28, 2023. [123] Kuan-Ting Wu, Enora Vuillermet, Elise Usureau, Youssef El-Helou, Michel Kazan, Wei-Yen Woon, Mihai Lazar, and Aurèlien Bruyant. Sic structural characterization by non destructive near-fi eld microscopy techniques. In 2022 International Semiconductor Conference (CAS) , pages 73–76, 2022. doi: 10.1109/CAS56377.2022.9934358. [124] Zhe Fei, Gregory O Andreev, Wenzhong Bao, Lingfeng M Zhang, Alexan- der S McLeod, Chen Wang, Margaret K Stewart, Zeng Zhao, Gerardo 134Dominguez, Mark Thiemens, et al. Infrared nanoscopy of dirac plasmons at the graphene–sio2 interface. Nano letters , 11(11):4701–4705, 2011. [125] Zongwei Xu, Zhongdu He, Ying Song, Xiu Fu, Mathias Rommel, Xichun Luo, Alexander Hartmaier, Junjie Zhang, and Fengzhou Fang. Topic re- view: application of raman spectroscopy characterization in micro/nano- machining. Micromachines , 9(7):361, 2018. [126] Ben G Streetman, Sanjay Banerjee, et al. Solid state electronic devices , volume 4. Prentice hall New Jersey, 2000. [127] A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand. Infrared nanoscopy of strained semiconductors. Nature Nanotechnology , 4(3):153–157, jan 2009. doi: 10.1038/nnano.2008.399. URL https://doi.org/10.1038%2Fnnano. 2008.399 . [128] Alexander M. Gigler, Andreas J. Huber, Michael Bauer, Alexander Ziegler, Rainer Hillenbrand, and Robert W. Stark. Nanoscale residual stress-fi eld mapping around nanoindents in SiC by IR s-SNOM and confocal raman microscopy. Optics Express , 17(25):22351, nov 2009. doi: 10.1364/oe.17. 022351. URL https://doi.org/10.1364%2Foe.17.022351 . [129] Jun Liu and Yogesh K Vohra. Raman modes of 6 h polytype of silicon carbide to ultrahigh pressures: A comparison with silicon and diamond. Physical review letters , 72(26):4105, 1994. [130] K Karch, F Bechstedt, P Pavone, and D Strauch. Pressure-dependent prop- erties of sic polytypes. Physical Review B , 53(20):13400, 1996. [131] Olivier Deparis. Poynting vector in transfer-matrix formalism for the calcu- lation of light absorption profi le in stratifi ed isotropic optical media. Optics letters , 36(20):3960–3962, 2011. [132] Dimitris V Bellas, Dimosthenis Toliopoulos, Nikolaos Kalfagiannis, Anas- tasios Siozios, Petros Nikolaou, Pantelis C Kelires, Demosthenes C Koutso- georgis, P Patsalas, and Elefterios Lidorikis. Simulating the opto-thermal 135processes involved in laser induced self-assembly of surface and sub-surface plasmonic nano-structuring. Thin Solid Films , 630:7–24, 2017. [133] Steven J Byrnes. Multilayer optical calculations. arXiv preprint arXiv:1603.02720 , 2016. [134] David R Jackson. Plane wave propagation and refl ection. In The Electrical Engineering Handbook , pages 513–524. Elsevier, 2005. [135] Joshua D Caldwell, Igor Aharonovich, Guillaume Cassabois, James H Edgar, Bernard Gil, and DN Basov. Photonics with hexagonal boron nitride. Nature Reviews Materials , 4(8):552–567, 2019. [136] Joshua D Caldwell, Andrey V Kretinin, Yiguo Chen, Vincenzo Giannini, Michael M Fogler, Yan Francescato, Chase T Ellis, Joseph G Tischler, Colin R Woods, Alexander J Giles, et al. Sub-diff ractional volume-confi ned polaritons in the natural hyperbolic material hexagonal boron nitride. Na- ture communications , 5(1):5221, 2014. [137] Christian Huck, Jochen Vogt, Tomáš Neuman, Tadaaki Nagao, Rainer Hil- lenbrand, Javier Aizpurua, Annemarie Pucci, and Frank Neubrech. Strong coupling between phonon-polaritons and plasmonic nanorods. Optics ex- press , 24(22):25528–25539, 2016. [138] Xi Ling, Wenjing Fang, Yi-Hsien Lee, Paulo T Araujo, Xu Zhang, Joaquin F Rodriguez-Nieva, Yuxuan Lin, Jin Zhang, Jing Kong, and Mildred S Dres- selhaus. Raman enhancement eff ect on two-dimensional layered materials: graphene, h-bn and mos2. Nano letters , 14(6):3033–3040, 2014.
|