跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡姵綾
研究生(外文):Pei-Ling Tsai
論文名稱(外文):gamma-SUP on PCA
指導教授:王紹宣
指導教授(外文):Shao-Hsuan Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:統計研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:44
中文關鍵詞:聚類演算法γ-散度γ-自我更新過程主成分分析自我更新過程
外文關鍵詞:clustering algorithmγ-divergenceγ-SUPprincipal component analysisself-updating process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
主成分分析(PCA)是一種廣泛使用的統計工具,用於降低大型資料集的維度,同時保留大部分資訊。一個關鍵是將 PCA 應用於聚類分析,這在異常檢測、生物學和醫學等領域至關重要。傳統的基於模型的方法對模型錯誤指定很敏感,並且需要預先定義聚類的數量,可能會導致偏差的結果或不穩定的推理。在本文中,我們提出了一種新穎的 PCA 方法,稱為 γ-SUP PCA,它將 γ-SUP 方法與 PCA 結合,用來避免了指定聚類數量和特定的模型選擇,同時有效地提取重要特徵。數值研究將證明所提出方法的穩健性能。
Principal component analysis (PCA) is a widely used statistical tool for reducing the dimensionality of large data sets while retaining most of the information. A key area of interest is applying PCA to cluster analysis, which is crucial in fields such as anomaly detection, biology, and medicine. Traditional model-based approaches are sensitive to model mis-specification and require a predefined number of clusters, potentially leading to biased results or unstable inferences. In this article, we propose a novel PCA method, γ-SUP PCA, which combines the γ-SUP approach with PCA. This method circumvents the need to specify the number of clusters and model selection, while effectively extracting important features. Numerical studies will demonstrate the robust performance of the proposed method.
1 Introduction 1
2 Review of γ-self update process 3
2.1 γ-divergence 3
2.2 The q-Gaussian distribution 3
2.3 γ-SUP 6
3 Method 9
3.1 Mixture probabilistic PCA model 9
3.2 γ-SUP PCA 9
3.3 Rank selection of feature matrix B 15
4 Numerical Study 16
4.1 Scenario 1: two clusters 16
4.2 Scenario 2 three clusters 19
5 Data analysis 22
5.1 NBA Dataset 22
5.2 Diabetes Dataset 27
6 Conclusion 32
References 33
1.Amari, S.-i. and Ohara, A. (2011). Geometry of q-exponential family of probability distributions. Entropy, 13(6):1170–1185.
2.Chen, T.-L., Hsieh, D.-N., Hung, H., Tu, I.-P., Wu, P.-S., Wu, Y.-M., Chang, W.-H., and Huang, S.-Y. (2014). gamma-sup: A clustering algorithm for cryo-electron microscopy images of asymmetric particles. Annals of Applied Statistics,8(1):259–285.
3.Chen, T.-L. and Shiu, S.-Y. (2007). A new clustering algorithm based on self-updating process. JSM proceedings, statistical computing section, Salt Lake City, Utah, pages
2034–2038.
4.Cichocki, A. and Amari, S.-i. (2010). Families of alpha- beta- and gamma-divergences:Flexible and robust measures of similarities. Entropy, 12(6):1532–1568.
5.Eguchi, S., Komori, O., and Kato, S. (2011). Projective power entropy and maximum tsallis entropy distributions. Entropy, 13(10):1746–1764.
6.Fujisawa, H. and Eguchi, S. (2008). Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis, 99(9):2053–2081.
7.Maćkiewicz, A. and Ratajczak, W. (1993). Principal components analysis (pca). Computers & Geosciences, 19(3):303–342.
8.Morissette, L. and Chartier, S. (2013). The k-means clustering technique: General considerations and implementation in mathematica. Tutorials in Quantitative Methods for Psychology, 9(1):15–24.
9.Nakagawa, T. and Hashimoto, S. (2020). Robust bayesian inference via γ-divergence.Communications in Statistics-Theory and Methods, 49(2):343–360.
電子全文 電子全文(網際網路公開日期:20260801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top