|
Abesadze, S., & Nozadze, D. (2020). Make 21st century education: The importance of teaching programming in schools. International Journal of Learning and Teaching, 6(3), 6.
Affleck, G., & Smith, T. (1999). Identifying a need for web-based course support. ASCILITE, 99.
Allen, J. M., Vahid, F., Edgcomb, A., Downey, K., & Miller, K. (2019). An analysis of using many small programs in cs1. Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 585–591. https://doi.org/10.1145/3287324.3287466
Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh, J., Iqbal, S., Bennett, P. N., Inkpen, K., et al. (2019). Guidelines for human-ai interaction. Proceedings of the 2019 chi conference on human factors in computing systems, 1–13.
Ashley, K. D. (1992). Case-based reasoning and its implications for legal expert systems. Artificial Intelligence and Law, 1(2), 113–208.
Ayman, S. E., El-Seoud, S. A., Nagaty, K., & Karam, O. H. (2023). The influence of chatgpt on student learning and academic performance. 2023 International Conference on Computer and Applications (ICCA), 1–5. https://doi.org/10.1109/ICCA59364.2023.10401713
Baldassarre, M. T., Caivano, D., Fernandez Nieto, B., Gigante, D., & Ragone, A. (2023). The social impact of generative ai: An analysis on chatgpt. Proceedings of the 2023 ACM Conference on Information Technology for Social Good, 363–373.
Barke, S., James, M. B., & Polikarpova, N. (2023). Grounded copilot: How programmers interact with code-generating models. Proc. ACM Program. Lang., 7(OOPSLA1). https://doi.org/10.1145/3586030
Becker, B. A., Craig, M., Denny, P., Keuning, H., Kiesler, N., Leinonen, J., Luxton-Reilly, A., Prather, J., & Quille, K. (2023). Generative ai in introductory programming.
Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. SIGCSE Bull., 39(2), 32–36. https://doi.org/10.1145/1272848.1272879
Bosse, Y., & Gerosa, M. A. (2017). Why is programming so difficult to learn? patterns of difficulties related to programming learning mid-stage. ACM SIGSOFT Software Engineering Notes, 41(6), 1–6.
Brown, N., & Wilson, G. (2018). Ten quick tips for teaching programming. PLOS Computational Biology, 14, e1006023. https://doi.org/10.1371/journal.pcbi.1006023
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877–1901.
Budak, E. Ç., Geçer, A. K., & Topal, A. D. (2021). The effect of programming with scratch course on reflective thinking skills of students towards problem solving. Journal of Learning and Teaching in Digital Age, 6(1), 72–80.
Cabo, C. (2023). Developing and documenting problem-solving strategies for computer programming before code writing. 2023 IEEE Frontiers in Education Conference (FIE), 1–5. https://doi.org/10.1109/FIE58773.2023.10343169
Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning of computer programming: A literature review. Contemporary Educational Technology, 12(2), ep272.
Chen, W.-F., & Yeh, K.-C. (2006). Work in progress: Creating a case-based reasoning digital library to improve learning in an introductory programming course. Proceedings. Frontiers in Education. 36th Annual Conference, 21–22.
Chung, I.-L., Chou, C.-M., Hsu, C.-P., & Li, D.-K. (2016). A programming learning diagnostic system using case-based reasoning method. 2016 International Conference on System Science and Engineering (ICSSE), 1–4.
Davies, S. (2008). The effects of emphasizing computational thinking in an introductory programming course. 2008 38th Annual Frontiers in Education Conference, T2C-3-T2C–8. https://doi.org/10.1109/FIE.2008.4720362
Denny, P., Leinonen, J., Prather, J., Luxton-Reilly, A., Amarouche, T., Becker, B. A., & Reeves, B. N. (2024). Prompt problems: A new programming exercise for the generative ai era. Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1, 296–302. https://doi.org/10.1145/3626252.3630909
Deriba, F. G., Sanusi, I. T., & Sunday, A. O. (2023). Enhancing computer programming education using chatgpt-a mini review. Proceedings of the 23rd Koli Calling International Conference on Computing Education Research, 1–2.
Elisabet, D., Sensuse, D. I., & Al Hakim, S. (2019). Implementation of case-method cycle for case-based reasoning in human medical health: A systematic review. 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), 1–6. https://doi.org/10.1109/ICICoS48119.2019.8982438
Fuchs, K. (2023). Exploring the opportunities and challenges of nlp models in higher education: Is chat gpt a blessing or a curse? Frontiers in Education, 8, 1166682.
Geng, C., Zhang, Y., Pientka, B., & Si, X. (2023). Can chatgpt pass an introductory level functional language programming course?
Gick, M. L. (1986). Problem-solving strategies. Educational psychologist, 21(1-2), 99–120.
Guo, Y., & Lee, D. (2023). Leveraging chatgpt for enhancing critical thinking skills. Journal of Chemical Education, 100(12), 4876–4883.
Handayani, R. D., Lesmono, A. D., Prastowo, S. B., Supriadi, B., & Dewi, N. M. (2022). Bringing computational thinking skills into physics classroom through project-based learning. 2022 8th International Conference on Education and Technology (ICET), 76–80. https://doi.org/10.1109/ICET56879.2022.9990631
Jonassen, D. H., & Hernandez-Serrano, J. (2002). Case-based reasoning and instructional design: Using stories to support problem solving. Educational technology research and development, 50(2), 65–77.
Kalla, D., & Smith, N. (2023). Study and analysis of chat gpt and its impact on different fields of study. International Journal of Innovative Science and Research Technology, 8(3), 827–833.
Kolodner, J. (2014). Case-based reasoning. Morgan Kaufmann.
Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of novice programmers. Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education, 14–18. https://doi.org/10.1145/1067445.1067453
Madotto, A., Lin, Z., Winata, G. I., & Fung, P. (2021). Few-shot bot: Prompt-based learning for dialogue systems.
Nist. dictionary of algorithms and data structures. (n.d.). Retrieved May 15, 2024, from https://xlinux.nist.gov/dads/
Polya, G. (1945). How to solve it? Princeton University Press.
Portnoff, S. R. (2018). The introductory computer programming course is first and foremost a language course. ACM Inroads, 9(2), 34–52.
Qadir, J. (2023). Engineering education in the era of chatgpt: Promise and pitfalls of generative ai for education. 2023 IEEE Global Engineering Education Conference (EDUCON), 1–9.
Qureshi, B. (2023). Exploring the use of chatgpt as a tool for learning and assessment in undergraduate computer science curriculum: Opportunities and challenges. arXiv preprint arXiv:2304.11214.
Rahman, M. M., & Watanobe, Y. (2023). Chatgpt for education and research: Opportunities, threats, and strategies. Applied Sciences, 13(9), 5783.
Rasul, T., Nair, S., Kalendra, D., Robin, M., de Oliveira Santini, F., Ladeira, W. J., Sun, M., Day, I., Rather, R. A., & Heathcote, L. (2023). The role of chatgpt in higher education: Benefits, challenges, and future research directions. Journal of Applied Learning and Teaching, 6(1).
Ratcliff, B., & Siddiqi, J. I. (1985). An empirical investigation into problem decomposition strategies used in program design. International Journal of Man-Machine Studies, 22(1), 77–90.
Reinfelds, J. (1995). A three paradigm first course for cs majors. ACM SIGCSE Bulletin, 27(1), 223–227.
Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L., Alyafeai, Z., Chaffin, A., Stiegler, A., Scao, T. L., Raja, A., et al. (2021). Multitask prompted training enables zero-shot task generalization. arXiv preprint arXiv:2110.08207.
Selby, C. C. (2012). Promoting computational thinking with programming. Proceedings of the 7th workshop in primary and secondary computing education, 74–77.
Shute, V. J. (2008). Focus on formative feedback. Review of educational research, 78(1), 153–189.
Stahl, M., Biermann, L., Nehring, A., & Wachsmuth, H. (2024). Exploring llm prompting strategies for joint essay scoring and feedback generation.
Travers, M. D. (1996). Programming with agents new metaphors for thinking about computation [Doctoral dissertation, Massachusetts Institute of Technology].
Vaithilingam, P., Zhang, T., & Glassman, E. L. (2022). Expectation vs. experience: Evaluating the usability of code generation tools powered by large language models. Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3491101.3519665
Voskoglou, M. G., & Buckley, S. (2012). Problem solving and computational thinking in a learning environment. arXiv preprint arXiv:1212.0750.
Watson, I. (1999). Case-based reasoning is a methodology not a technology. Knowledge-Based Systems, 12(5), 303–308. https://doi.org/https://doi.org/10.1016/S0950-7051(99)00020-9
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35, 24824–24837.
Welcome to flask —flask documentation (3.0.x). (n.d.). Retrieved May 15, 2024, from https://flask.palletsprojects.com/en/3.0.x/
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Wolz, U., Stone, M., Pulimood, S. M., & Pearson, K. (2010). Computational thinking via interactive journalism in middle school. Proceedings of the 41st ACM Technical Symposium on Computer Science Education, 239–243. https://doi.org/10.1145/1734263.1734345
Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011). Introducing computational thinking in education courses. Proceedings of the 42nd ACM technical symposium on Computer science education, 465–470.
Zhang, Y. (2023). Generative ai has lowered the barriers to computational social sciences. arXiv preprint arXiv:2311.10833.
Zhong, R., Lee, K., Zhang, Z., & Klein, D. (2021). Adapting language models for zero-shot learning by meta-tuning on dataset and prompt collections. arXiv preprint arXiv:2104.04670.
教育部智慧創新跨域人才培育計畫,大學程式設計先修測驗. (n.d.). Retrieved May 15, 2024, from https://apcs.csie.ntnu.edu.tw/
|