|
參考文獻 [1] Wikipedia, “Internet of things”, Accessed on Jun 5, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Internet_of_thing [2] AWS, “What is a Distributed denial-of-service attack (DDoS) ?”, Accessed on Jun 5, 2024. [Online].Available: https://aws.amazon.com/tw/shield/ddos-attack-protection/ [3] CyberArk, “What is a Malware Attack?”, Accessed on Jun 5, 2024. [Online]. Available: https://www.cyberark.com/what-is/malware/ [4] IBM, “What is an intrusion detection system (IDS)?”, Accessed on Jun 5, 2024. [Online]. Available: https://www.ibm.com/topics/intrusion-detection-system [5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: https://doi.org/10.1038/nature14539. [6] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, Jul. 2020, doi: https://doi.org/10.1126/science.aaa8415. [7] 51CTO, “Global IoT Market Forecast”, Accessed on Jun 6, 2024. [Online]. Available: https://www.51cto.com/article/717841.html [8] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Muller, “Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications,” Proceedings of the IEEE, vol. 109, no. 3, pp. 247–278, Mar. 2021, doi: https://doi.org/10.1109/jproc.2021.3060483. [9] R. Haridas and J. R L, “Convolutional Neural Networks: A Comprehensive Survey,” International Journal of Applied Engineering Research, vol. 14, no. 3, p. 780, Feb. 2019, doi: https://doi.org/10.37622/ijaer/14.3.2019.780-789. [10] S. D, “Metro Water Fraudulent Prediction in Houses Using Convolutional Neural Network and Recurrent Neural Network,” Revista Gestão Inovaçãoe Tecnologias, vol. 11, no. 4, pp. 1177–1187, Jul. 2021, doi: https://doi.org/10.47059/revistageintec.v11i4.2177. [11] L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, Nov. 2020, doi: https://doi.org/10.1016/j.neucom.2020.07.061. [12] P. I. Frazier, “A Tutorial on Bayesian Optimization,” arXiv (Cornell University), Jul. 2018, doi: https://doi.org/10.48550/arxiv.1807.02811. [13] Wikipedia, “LightGBM”, Accessed on Jun 5, 2024. [Online]. Available: https://en.wikipedia.org/wiki/LightGBM. [14] E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions,” Journal of Mathematical Psychology, vol. 85, pp. 1–16, Aug. 2018, doi: https://doi.org/10.1016/j.jmp.2018.03.001. [15] T. Wagner, M. Emmerich, A. Deutz, and Wolfgang Ponweiser, “On Expected-Improvement Criteria for Model-based Multi-objective Optimization,” Springer eBooks, pp. 718–727, Jan. 2010, doi: https://doi.org/10.1007/978-3-642-15844-5_72. [16] J. T. Wilson, F. Hutter, and Marc Peter Deisenroth, “Maximizing acquisition functions for Bayesian optimization,” neural information processing systems, vol. 31, pp. 9884–9895, Dec. 2018. [17] Christophm, “Interpretable Machine Learning”, 2022, Accessed on April 11, 2022. [Online]. Available: https://christophm.github.io/interpretable-ml-book/ [18] S. Jose, D. Malathi, B. Reddy, and D. Jayaseeli, “A Survey on Anomaly Based Host Intrusion Detection System,” Journal of Physics: Conference Series, vol. 1000, p. 012049, Apr. 2018, doi: https://doi.org/10.1088/1742-6596/1000/1/012049. [19] R. Sekar, Y. Guang, S. Verma, and T. Shanbhag, “A high-performance network intrusion detection system,” Proceedings of the 6th ACM conference on Computer and communications security - CCS ’99, 1999, doi: https://doi.org/10.1145/319709.319712. [20] H. K. Lim, J. B. Kim, J.S. Heo, K. Kim, Y. G. Hong, and Y. H. Han. “Packet-based network traffic classification using deep learning.” IEEE International Conference on Artificial Intelligence in Information and Communication (ICAIIC 2019), pp. 046-051. 2019 , doi: https://doi.org/10.1109/icaiic.2019.8669045. [21] M. Ring, D. Schlör, D. Landes, and A. Hotho, “Flow-based network traffic generation using Generative Adversarial Networks,” Computers & Security, vol. 82, pp. 156–172, May 2019, doi: https://doi.org/10.1016/j.cose.2018.12.012. [22] B. de Ville, “Decision trees,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 5, no. 6, pp. 448–455, Oct. 2013, doi: https://doi.org/10.1002/wics.1278. [23] Wikipedia, “Boosting(machine learning”, Accessed on Jun 5, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Boosting_(machine_learning) [24] T. Chen and C. Guestrin, “XGBoost: a Scalable Tree Boosting System,” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16, pp. 785–794, 2016, doi: https://doi.org/10.1145/2939672.2939785. [25] GeeksforGeeks, “LightGBM Histogram-Based Learning”, Accessed on Jun 6, 202 4. [Online]. Available: https://www.geeksforgeeks.org/lightgbm-histogram-based-learning/. [26] J. Waring, C. Lindvall, and R. Umeton, “Automated Machine Learning: Review of the State-of-the-Art and Opportunities for Healthcare,” Artificial Intelligence in Medicine, vol. 104, p. 101822, Feb. 2020, doi: https://doi.org/10.1016/j.artmed.2020.101822. [27] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, “Auto-sklearn 2.0: hands-free automl via meta-learning,” 2022 The Journal of Machine Learning Research, vol. 23, no. 1, pp. 11936-11996, 2022. [28] H. Jin, F. Chollet, Q. Song, and X. Hu, “Autokeras: An automl library for deep learning,” 2023 Journal of Machine Learning Research, vol. 24, no. 6, pp. 1-6, 2023. [29] Sigrún Andradóttir, “Chapter 20 An Overview of Simulation Optimization via Random Search,” Handbooks in operations research and management science, pp. 617–631, Jan. 2006, doi: https://doi.org/10.1016/s0927-0507(06)13020-0. [30] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft Computing, vol. 22, no. 2, pp. 387–408, Jan. 2017, doi: https://doi.org/10.1007/s00500-016-2474-6. [31] Medium, “LIME:explain Machine Learning predictions”, Accessed on Jun 5, 2024. [Online]. Available: https://towardsdatascience.com/lime-explain-machine-learning-predictions-af8f18189bfe [32] SHAP, “Welcome to the SHAP documentation”, Accessed on Jun 5, 2024. [Online]. Available: https://shap.readthedocs.io/en/latest/ [33] Wikipedia, “Shapley value”, Accessed on Jun 5, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Shapley_value [34] E. Min, J. Long, Q. Liu, J. Cui, and W. Chen, “TR-IDS: Anomaly-Based Intrusion Detection through Text-Convolutional Neural Network and Random Forest,” Security and Communication Networks, vol. 2018, pp. 1–9, Jul. 2018, doi: https://doi.org/10.1155/2018/4943509. [35] Turing, “Word embeddings in NLP:A Complete Guide”, Accessed on Jun 5, 2024. [Online]. Available: https://www.turing.com/kb/guide-on-word-embeddings-in-nlp [36] Y. Zhou, J. Li, J. Chi, W. Tang, and Y. Zheng, “Set-CNN: A text convolutional neural network based on semantic extension for short text classification,” Knowledge-Based Systems, vol. 257, p. 109948, Dec. 2022, doi: https://doi.org/10.1016/j.knosys.2022.109948. [37] A. Verma and Virender Ranga, “ELNIDS: Ensemble Learning based Network Intrusion Detection System for RPL based Internet of Things,” The Internet of Things, Apr. 2019, doi: https://doi.org/10.1109/iot-siu.2019.8777504. [38] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,” Frontiers of Computer Science, vol. 14, no. 2, pp. 241–258, Aug. 2019, doi: https://doi.org/10.1007/s11704-019-8208-z. [39] Jin Kim, Nara Shin, S. Y. Jo, and Sang Hyun Kim, “Method of intrusion detection using deep neural network,” 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Feb. 2017, doi: https://doi.org/10.1109/bigcomp.2017.7881684. [40] B. Mahbooba, M. Timilsina, R. Sahal, and M. Serrano, “Explainable Artificial Intelligence (XAI) to Enhance Trust Management in Intrusion Detection Systems Using Decision Tree Model,” Complexity, vol. 2021, pp. 1–11, Jan. 2021, doi: https://doi.org/10.1155/2021/6634811. [41] L.-D. Chou, "Deep Learning-Based Malicious Traffic Detection and Defense Using Raspberry Pi," Project Technical Report, Dept. Comput. Sci. Inf. Eng., National Central University, 2022. [42] Raspberry Pi, “Raspberry Pi”, Accessed on Jun 5, 2024. [Online]. Available: https://www.raspberrypi.com/ [43] C.-W. Wu, "A Study of Malicious Network Traffic Detection Based on Graph Neural Network and Using eXplainable Artificial Intelligence to Optimize Model," M.S. thesis, Dept. Comput. Sci. Inf. Eng., National Central University, supervised by L.-D. Chou, 2022, Accessed on June 7, 2024. [Online]. Available: https://hdl.handle.net/11296/vvmm4v [44] UNB, “CICFlowMeter”, Accessed on Jun 5, 2024. [Online]. Available: https://www.unb.ca/cic/research/applications.html [45] I. Ullah and Q. H. Mahmoud, “A Scheme for Generating a Dataset for Anomalous Activity Detection in IoT Networks,” Advances in Artificial Intelligence, pp. 508–520, 2020, doi: https://doi.org/10.1007/978-3-030-47358-7_52. [46] S. Okada, M. Ohzeki, and S. Taguchi, “Efficient partition of integer optimization problems with one-hot encoding,” Scientific Reports, vol. 9, no. 1, Sep. 2019, doi: https://doi.org/10.1038/s41598-019-49539-6. [47] Wikipedia, “Normalization(statistics)”, Accessed on Jun 5, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Normalization_(statistics) [48] H. Henderi, “Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer,” IJIIS: International Journal of Informatics and Information Systems, vol. 4, no. 1, pp. 13–20, Mar. 2021, doi: https://doi.org/10.47738/ijiis.v4i1.73. [49] NumFOCUS Inc, “Pandas”, Accessed on Jun 5, 2024. [Online]. Available: https://pandas.pydata.org/ [50] NumPy, “NumPy”, Accessed on Jun 5, 2024. [Online]. Available: https://numpy.org/citing-numpy/ [51] Scikit-learn, “scikit-learn”, Accessed on Jun 5, 2024. [Online]. Available: https://scikit-learn.org/stable/ [52] Keras, “Keras:Deep Learning for humans”, Accessed on Jun 5, 2024. [Online]. Available: https://keras.io/ [53] Simon Blanke, “Hyperactive”, Accessed on Jun 5, 2024. [Online]. Available: https://github.com/SimonBlanke/Hyperactive#citing-hyperactive [54] ScienceDirect, “Confusion Matrix”, Accessed on Jun 5, 2024. [Online]. Available: https://www.sciencedirect.com/topics/engineering/confusion-matrix. [55] UNB, “Intrusion Detection Evaluation Dataset (CIC-IDS2017)”, Accessed Jun 6, 2024. [Online]. Available: https://www.unb.ca/cic/datasets/ids-2017.html [56] UNSW Research, “The UNSW-NB15 Dataset”, Accessed Jun 6, 2024. [Online]. Available: https://research.unsw.edu.au/projects/unsw-nb15-dataset [57] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data Poisoning Attacks Against Federated Learning Systems,” Computer Security – ESORICS 2020, pp. 480–501, 2020, doi: https://doi.org/10.1007/978-3-030-58951-6_24. [58] T. Bai, J. Luo, J. Zhao, B. Wen, and Q. Wang, “Recent Advances in Adversarial Training for Adversarial Robustness,” arXiv (Cornell University), Feb. 2021, doi: https://doi.org/10.48550/arxiv.2102.01356. [59] C.-F. Tsai, W.-C. Lin, Y.-H. Hu, and G.-T. Yao, “Under-sampling class imbalanced datasets by combining clustering analysis and instance selection,” Information Sciences, vol. 477, pp. 47–54, Mar. 2019, doi: https://doi.org/10.1016/j.ins.2018.10.029. [60] A. Gosain and S. Sardana, “Handling class imbalance problem using oversampling techniques: A review,” IEEE Xplore, Sep. 01, 2017. https://ieeexplore.ieee.org/abstract/document/8125820
|