|
Ahmed, A., Chandra, S., Herasevich, V., Gajic, O., & Pickering, B. W. (2011). The effect of two different electronic health record user interfaces on intensive care provider task load, errors of cognition, and performance. Critical Care Medicine, 39(7), 1626. https://doi.org/10.1097/CCM.0b013e31821858a0 Alex, B., Grover, C., Tobin, R., Sudlow, C., Mair, G., & Whiteley, W. (2019). Text mining brain imaging reports. Journal of Biomedical Semantics, 10(S1), 23. https://doi.org/10.1186/s13326-019-0211-7 Bangor, A., Kortum, P., & Miller, J. T. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, 4(3), 114-123. Berge, G. T., Granmo, O. C., Tveit, T. O., Munkvold, B. E., Ruthjersen, A. L., & Sharma, J. (2023). Machine learning-driven clinical decision support system for concept-based searching: A field trial in a Norwegian hospital. BMC Medical Informatics and Decision Making, 23(1), 5. https://doi.org/10.1186/s12911-023-02101-x Bolton, M. L., Biltekoff, E., & Humphrey, L. (2023). The mathematical meaninglessness of the NASA task load index: A level of measurement analysis. IEEE Transactions on Hu-man-Machine Systems, 53(3), 590-599. https://doi.org/10.1109/THMS.2023.3263482 Brooke, J. (1996). SUS – A quick and dirty usability scale. In Jordan, P. W., Thomas, B., We-erdmeester, B. A., & McClelland, A. L. (Eds.), Usability Evaluation in Industry (pp. 189-184). London: Taylor and Francis. Cascella, M., Montomoli, J., Bellini, V., & Bignami, E. (2023). Evaluating the feasibility of ChatGPT in Healthcare: An analysis of multiple clinical and research scenarios. Journal of Medical Systems, 47(1), 33. https://doi.org/10.1007/s10916-023-01925-4 Demner-Fushman, D., Rogers, W. J., & Aronson, A. R. (2017). MetaMap Lite: An evaluation of a new Java implementation of MetaMap. Journal of the American Medical Informat-ics Association, 24(4), 841-844. https://doi.org/10.1093/jamia/ocw177 Gao, M., Kortum, P., & Oswald, F. L. (2020). Multi-Language toolkit for the system usability scale. International Journal of Human–Computer Interaction, 36(20), 1883-1901. https://doi.org/10.1080/10447318.2020.1801173 Ghiasvand, O., & Kate, R. J. (2018). Learning for clinical named entity recognition without manual annotations. Informatics in Medicine Unlocked, 13, 122-127. https://doi.org/10.1016/j.imu.2018.10.011 Ghorayeb, A., Darbyshire, J. L., Wronikowska, M. W., & Watkinson, P. J. (2023). Design and validation of a new Healthcare Systems Usability Scale (HSUS) for clinical decision support systems: A mixed-methods approach. British Medical Journal Open, 13(1), e065323. https://doi.org/10.1136/bmjopen-2022-065323 Hart, S. G. (2006). Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (Oct.2006), 904-908. https://doi.org/10.1177/154193120605000909 Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Re-sults of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Ad-vances in Psychology (Vol. 52, pp. 139-183). North-Holland. https://doi.org/10.1016/S0166-4115(08)62386-9 Hripcsak, G., Ludemann, P., Pryor, T. A., Wigertz, O. B., & Clayton, P. D. (1994). Rationale for the Arden Syntax. Computers and Biomedical Research, 27(4), 291-324. https://doi.org/10.1006/cbmr.1994.1023 Hripcsak, G., Wigertz, O. B., & Clayton, P. D. (2018). Origins of the Arden Syntax. Artificial Intelligence in Medicine, 92, 7-9. https://doi.org/10.1016/j.artmed.2015.05.006 Hu, Y., Chen, C.-H., & Su, C.-Y. (2021). Exploring the effectiveness and moderators of block-based visual programming on student learning: A meta-analysis. Journal of Educational Computing Research, 58(8), 1467-1493. https://doi.org/10.1177/0735633120945935 Landolsi, M. Y., Hlaoua, L., & Ben Romdhane, L. (2023). Information extraction from electron-ic medical documents: State of the art and future research directions. Knowledge and In-formation Systems, 65(2), 463-516. https://doi.org/10.1007/s10115-022-01779-1 Metathesaurus—Rich Release Format (RRF). (2021). In UMLS® Reference Manual [Internet]. National Library of Medicine (US). https://www.ncbi.nlm.nih.gov/books/NBK9685/ Nguyen, O. T., Jenkins, N. J., Khanna, N., Shah, S., Gartland, A. J., Turner, K., & Merlo, L. J. (2021). A systematic review of contributing factors of and solutions to electronic health record–related impacts on physician well-being. Journal of the American Medical In-formatics Association, 28(5), 974-984. https://doi.org/10.1093/jamia/ocaa339 Overhage, J. M., & McCallie, D. (2020). Physician time spent using the electronic health record during outpatient encounters. Annals of Internal Medicine, 173(7), 594-595. https://doi.org/10.7326/L20-0278 Papadopoulos, P., Soflano, M., Chaudy, Y., Adejo, W., & Connolly, T. M. (2022). A systematic review of technologies and standards used in the development of rule-based clinical de-cision support systems. Health and Technology, 12(4), 713-727. https://doi.org/10.1007/s12553-022-00672-9 Peng, C., Yang, X., Yu, Z., Bian, J., Hogan, W. R., & Wu, Y. (2023). Clinical concept and rela-tion extraction using prompt-based machine reading comprehension. Journal of the American Medical Informatics Association, 30(9), 1486-1493. https://doi.org/10.1093/jamia/ocad107 QuickStats: Management of Patient Health Information Functions Among Office-Based Physi-cians With and Without a Certified Electronic Health Record (EHR) System—National Electronic Health Records Survey, United States, 2018. (2020). MMWR Morbidity and Mortality Weekly Report, 69, 1381. https://doi.org/10.15585/mmwr.mm6938a8 Quimbaya, A. P., Múnera, A. S., Rivera, R. A. G., Rodríguez, J. C. D., Velandia, O. M. M., Peña, A. A. G., & Labbé, C. (2016). Named entity recognition over electronic health records through a combined dictionary-based approach. Procedia Computer Science, 100, 55-61. https://doi.org/10.1016/j.procs.2016.09.123 Samwald, M., Fehre, K., de Bruin, J., & Adlassnig, K.-P. (2012). The Arden Syntax standard for clinical decision support: Experiences and directions. Journal of Biomedical Infor-matics, 45(4), 711-718. https://doi.org/10.1016/j.jbi.2012.02.001 Saver, J. L., Fonarow, G. C., Smith, E. E., Reeves, M. J., Grau-Sepulveda, M. V., Pan, W., Ol-son, D. M., Hernandez, A. F., Peterson, E. D., & Schwamm, L. H. (2013). Time to Treatment With Intravenous Tissue Plasminogen Activator and Outcome From Acute Is-chemic Stroke. Journal of the American Medical Association, 309(23), 2480–2488. https://doi.org/10.1001/jama.2013.6959 Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2020). A meta-analysis of teaching and learning computer programming: Effective instructional approaches and conditions. Computers in Human Behavior, 109, 106349. https://doi.org/10.1016/j.chb.2020.106349 Shen, L., Wright, A., Lee, L. S., Jajoo, K., Nayor, J., & Landman, A. (2020). Clinical decision support system, using expert consensus-derived logic and natural language processing, decreased sedation-type order errors for patients undergoing endoscopy. Journal of the American Medical Informatics Association, 28(1), 95-103. https://doi.org/10.1093/jamia/ocaa250 Sottara, D., Greenes, R. A., Haug, P. J., Potrich, E., & Ebert, M. (2014). The health eDecisions authoring environment for shareable clinical decision support artifacts. Challenge+ DC@ RuleML. Strasberg, H. R., Rhodes, B., Del Fiol, G., Jenders, R. A., Haug, P. J., & Kawamoto, K. (2021). Contemporary clinical decision support standards using health level seven inter-national fast healthcare interoperability resources. Journal of the American Medical In-formatics Association, 28(8), 1796-1806. https://doi.org/10.1093/jamia/ocab070 Sun, Q., & Bhatia, P. (2021). Neural entity recognition with gazetteer based fusion (arXiv:2105.13225). arXiv. https://doi.org/10.48550/arXiv.2105.13225 Sung, S.-F., Chen, K., Wu, D. P., Hung, L.-C., Su, Y.-H., & Hu, Y.-H. (2018). Applying natural language processing techniques to develop a task-specific EMR interface for timely stroke thrombolysis: A feasibility study. International Journal of Medical Informatics, 112, 149-157. https://doi.org/10.1016/j.ijmedinf.2018.02.005 Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020). An overview of clinical decision support systems: Benefits, risks, and strate-gies for success. Npj Digital Medicine, 3(1), Article 1. https://doi.org/10.1038/s41746-020-0221-y Uslu, A., & Stausberg, J. (2021). Value of the electronic medical record for hospital care: Up-date from the literature. Journal of Medical Internet Research, 23(12), e26323. https://doi.org/10.2196/26323 Wang, Y., Wang, L., Rastegar-Mojarad, M., Moon, S., Shen, F., Afzal, N., Liu, S., Zeng, Y., Mehrabi, S., Sohn, S., & Liu, H. (2018). Clinical information extraction applications: A literature review. Journal of Biomedical Informatics, 77, 34-49. https://doi.org/10.1016/j.jbi.2017.11.011 Wohlgemut, J. M., Pisirir, E., Kyrimi, E., Stoner, R. S., Marsh, W., Perkins, Z. B., & Tai, N. R. M. (2023). Methods used to evaluate usability of mobile clinical decision support sys-tems for healthcare emergencies: A systematic review and qualitative synthesis. Journal of the American Medical Informatics Association Open, 6(3), ooad051. https://doi.org/10.1093/jamiaopen/ooad051 Zhao, X., Ding, H., & Feng, Z. (2021). GLaRA: Graph-based labeling rule augmentation for weakly supervised named entity recognition. Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, 3636-3649. https://doi.org/10.18653/v1/2021.eacl-main.318 Zhou, Y., Ju, C., Caufield, J. H., Shih, K., Chen, C., Sun, Y., Chang, K.-W., Ping, P., & Wang, W. (2021). Clinical named entity recognition using contextualized token representations (arXiv:2106.12608). arXiv. https://doi.org/10.48550/arXiv.2106.12608
|