跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍中璟
研究生(外文):Chung-Ching Lan
論文名稱:開發基於電子病歷之臨床決策支援輔助系統:結合視覺化積木規則設計界面
論文名稱(外文):Developing an EMR-Based Checklist Decision Support System by a Block-Based Visual Design Interface
指導教授:胡雅涵胡雅涵引用關係
指導教授(外文):Ya-Han Hu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:英文
論文頁數:49
中文關鍵詞:電子病歷視覺式程式設計MetaMapLiteSUSNASA-TLX
外文關鍵詞:EMRblock-based visual programmingMetaMapLiteSUSNASA-TLX
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:臨床人員需要花費大量精力,並在時間壓力下閱讀病歷,以及比對治療檢查表,以確認患者是否有禁忌症。電子病歷(Electronic Medical Record, EMR)的出現帶來了自動化的可能,然而,自動化所需之醫學規則的編修門檻高,需要技術人員的協助,造成高昂的溝通與維護系統的成本。
目標:開發基於電子病歷和自然語言處理技術(Natural Language Processing, NLP)的臨床決策輔助系統,結合積木式視覺化臨床規則設計界面,試圖減少檢核檢查表的工作負荷,並提高時間效率及正確率。
資料與方法:本研究開發之系統採用MetaMapLite,從非結構化的EMR記錄中識別與核查表相關的醫學概念,以及結合結構化的檢驗資料,自動判讀檢查表之規則成立與否。另外,受積木式程式設計啟發,以Blockly開發視覺化界面協助臨床人員透過較簡易的方式創作規則。本研究邀集十二位臨床人員進行模擬任務實驗,請受試者使用本研究所開發之系統與傳統EMR界面,分別對四位患者檢核tPA (tissue plasminogen acti-vator) 和Factor XI (plasma thromboplastin antecedent) 檢查表,紀錄完成時間、填答結果,並由完成任務後填寫之系統可用性量表(System Usability Scale, SUS)、NASA心智負荷指標量表(NASA-Task Load Index, NASA-TLX)衡量可用性及工作負荷。
結果:根據衡量指標的評估結果,本研究所開發之電子病歷臨床決策輔助系統優於傳統EMR介面。檢查表的準確率從0.89提高至0.97(p = 0.046),檢核時間減少了23%;新系統的SUS分數優於傳統EMR介面(67.08對45.62,p = 0.005),NASA-TLX的工作負荷分數也較低(38.65對56.42,p = 0.046)。
討論與結論:本研究結合Blockly積木式視覺設計界面,以降低培訓成本,使臨床人員能在無技術人員的協助下設計規則,也透過tPA和Factor XI檢查表揭示了該方法的泛用性。儘管目前尚無法理解臨床筆記的上下文語意,與傳統的EMR界面相比,檢核錯誤和審查時間皆顯著減少。
Background: The widespread adoption of electronic medical records (EMR) has created oppor-tunities for automating clinical checklists. Previously, when determining whether to administer tPA (tissue plasminogen activator) to patients with acute ischemic stroke, clinicians faced signif-icant time pressure and effort to verify if the patient had any contraindications. Additionally, the technical barrier for creating medical rules is substantial, often necessitating the help of technical personnel, which results in high maintenance costs for clinical decision support system (CDSS).
Objective: To develop an EMR-based CDSS utilizing natural language processing (NLP) tech-niques aimed at reducing the workload for clinicians reviewing checklists, and to improve both time efficiency and accuracy.
Materials and Methods: Our system utilizes MetaMapLite to extract medical concepts from un-structured EMR notes, integrating these with structured laboratory data to evaluate the comple-tion of checklist criteria. Additionally, this study introduced a Blockly-based visual program-ming interface to facilitate rule creation by clinicians, reducing the need for technical expertise and training costs. Twelve clinicians were enlisted by us to perform simulated tasks comparing our system with a traditional EMR interface. The testers reviewed tPA and Factor XI (plasma thromboplastin antecedent) checklists for four patients, during which completion time, checklist accuracy, usability (via the System Usability Scale, SUS), and cognitive workload (via the NASA-Task Load Index, NASA-TLX) were measured.
Results: The proposed system demonstrated statistically significant improvements over the tradi-tional EMR interface. Checklist accuracy increased from 0.89 to 0.97 (p = 0.046), and the time to complete checklists decreased by 23%. Additionally, our system’s SUS score is better than the traditional EMR interface (67.08 vs. 45.62, p = 0.005), and the NASA-TLX workload score is lower than the traditional EMR interface (38.65 vs. 56.42, p = 0.046).
Discussion and Conclusion: This study successfully integrated a block-based visual design in-terface to facilitate independent rule design by clinical specialists, significantly reducing both training costs and the reliance on technical personnel. Although the current implementation can-not fully interpret the context of clinical notes, it significantly reduced checklist errors and re-view time compared to traditional EMR interface.
Table of Contents
摘要 ii
Abstract iv
誌謝 vi
Table of Contents vii
List of Figures ix
List of Tables x
1 Introduction 1
2 Related Work 5
2.1 Clinical Named Entity Recognition 5
2.1.1 Rule-Based Methods 5
2.1.2 Dictionary-Based Methods 6
2.1.3 Machine Learning-Based Methods 6
2.2 NLP-powered CDSS 8
2.3 CDSS Evaluation Methods 8
2.4 Clinical Decision Support Standards 9
3 System Design 10
3.1 Checklist Authoring Module 11
3.2 Checklist Evaluation Module 12
4 Experiment 14
4.1 Dataset 14
4.2 Experiment I: NER Performance of MetaMapLite 14
4.3 Experiment II: Simulation Tasks 16
4.3.1 Experiment Design 16
4.3.2 Experiment Protocol 19
5 Results 20
5.1 Experiment I: NER Performance of MetaMapLite 20
5.2 Experiment II: Simulation Tasks 22
6 Discussion 27
6.1 Main Findings 27
6.2 NER Performance of MetaMapLite 27
6.3 Checklist Accuracy 28
6.4 EMR Usability 28
6.5 Cognitive Workload 29
6.6 Limitations 30
7 Conclusion 32
References 33

List of Figures
Fig. 1. SSCS workflow. 10
Fig. 2. An example of translation from visual blocks to machine-readable expression. 12
Fig. 3. UMLS Metathesaurus broader and narrower relationships 15
Fig. 4. Simulation task design for twelve testers. 17
Fig. 5. The comparison of traditional EMR interface and SSCS interface. 18
Fig. 6. Comparison of mean NASA-TLX subscales between traditional EMR interface and SSCS. 26

List of Tables
Table 1 The summary of related works 7
Table 2 The user-defined acronyms for experiment I. 16
Table 3 Review order of patient cases by testers in simulation task. 19
Table 4 Performance of automatic identification of tPA checklist-related medical concepts. 20
Table 5 Tester characteristics and experiences. 22
Table 6 Wilcoxon signed-rank test results. 23
Table 7 Clinician reviewed checklist accuracies. 24
Ahmed, A., Chandra, S., Herasevich, V., Gajic, O., & Pickering, B. W. (2011). The effect of two different electronic health record user interfaces on intensive care provider task load, errors of cognition, and performance. Critical Care Medicine, 39(7), 1626. https://doi.org/10.1097/CCM.0b013e31821858a0
Alex, B., Grover, C., Tobin, R., Sudlow, C., Mair, G., & Whiteley, W. (2019). Text mining brain imaging reports. Journal of Biomedical Semantics, 10(S1), 23. https://doi.org/10.1186/s13326-019-0211-7
Bangor, A., Kortum, P., & Miller, J. T. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, 4(3), 114-123.
Berge, G. T., Granmo, O. C., Tveit, T. O., Munkvold, B. E., Ruthjersen, A. L., & Sharma, J. (2023). Machine learning-driven clinical decision support system for concept-based searching: A field trial in a Norwegian hospital. BMC Medical Informatics and Decision Making, 23(1), 5. https://doi.org/10.1186/s12911-023-02101-x
Bolton, M. L., Biltekoff, E., & Humphrey, L. (2023). The mathematical meaninglessness of the NASA task load index: A level of measurement analysis. IEEE Transactions on Hu-man-Machine Systems, 53(3), 590-599. https://doi.org/10.1109/THMS.2023.3263482
Brooke, J. (1996). SUS – A quick and dirty usability scale. In Jordan, P. W., Thomas, B., We-erdmeester, B. A., & McClelland, A. L. (Eds.), Usability Evaluation in Industry (pp. 189-184). London: Taylor and Francis.
Cascella, M., Montomoli, J., Bellini, V., & Bignami, E. (2023). Evaluating the feasibility of ChatGPT in Healthcare: An analysis of multiple clinical and research scenarios. Journal of Medical Systems, 47(1), 33. https://doi.org/10.1007/s10916-023-01925-4
Demner-Fushman, D., Rogers, W. J., & Aronson, A. R. (2017). MetaMap Lite: An evaluation of a new Java implementation of MetaMap. Journal of the American Medical Informat-ics Association, 24(4), 841-844. https://doi.org/10.1093/jamia/ocw177
Gao, M., Kortum, P., & Oswald, F. L. (2020). Multi-Language toolkit for the system usability scale. International Journal of Human–Computer Interaction, 36(20), 1883-1901. https://doi.org/10.1080/10447318.2020.1801173
Ghiasvand, O., & Kate, R. J. (2018). Learning for clinical named entity recognition without manual annotations. Informatics in Medicine Unlocked, 13, 122-127. https://doi.org/10.1016/j.imu.2018.10.011
Ghorayeb, A., Darbyshire, J. L., Wronikowska, M. W., & Watkinson, P. J. (2023). Design and validation of a new Healthcare Systems Usability Scale (HSUS) for clinical decision support systems: A mixed-methods approach. British Medical Journal Open, 13(1), e065323. https://doi.org/10.1136/bmjopen-2022-065323
Hart, S. G. (2006). Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (Oct.2006), 904-908. https://doi.org/10.1177/154193120605000909
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Re-sults of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Ad-vances in Psychology (Vol. 52, pp. 139-183). North-Holland. https://doi.org/10.1016/S0166-4115(08)62386-9
Hripcsak, G., Ludemann, P., Pryor, T. A., Wigertz, O. B., & Clayton, P. D. (1994). Rationale for the Arden Syntax. Computers and Biomedical Research, 27(4), 291-324. https://doi.org/10.1006/cbmr.1994.1023
Hripcsak, G., Wigertz, O. B., & Clayton, P. D. (2018). Origins of the Arden Syntax. Artificial Intelligence in Medicine, 92, 7-9. https://doi.org/10.1016/j.artmed.2015.05.006
Hu, Y., Chen, C.-H., & Su, C.-Y. (2021). Exploring the effectiveness and moderators of block-based visual programming on student learning: A meta-analysis. Journal of Educational Computing Research, 58(8), 1467-1493. https://doi.org/10.1177/0735633120945935
Landolsi, M. Y., Hlaoua, L., & Ben Romdhane, L. (2023). Information extraction from electron-ic medical documents: State of the art and future research directions. Knowledge and In-formation Systems, 65(2), 463-516. https://doi.org/10.1007/s10115-022-01779-1
Metathesaurus—Rich Release Format (RRF). (2021). In UMLS® Reference Manual [Internet]. National Library of Medicine (US). https://www.ncbi.nlm.nih.gov/books/NBK9685/
Nguyen, O. T., Jenkins, N. J., Khanna, N., Shah, S., Gartland, A. J., Turner, K., & Merlo, L. J. (2021). A systematic review of contributing factors of and solutions to electronic health record–related impacts on physician well-being. Journal of the American Medical In-formatics Association, 28(5), 974-984. https://doi.org/10.1093/jamia/ocaa339
Overhage, J. M., & McCallie, D. (2020). Physician time spent using the electronic health record during outpatient encounters. Annals of Internal Medicine, 173(7), 594-595. https://doi.org/10.7326/L20-0278
Papadopoulos, P., Soflano, M., Chaudy, Y., Adejo, W., & Connolly, T. M. (2022). A systematic review of technologies and standards used in the development of rule-based clinical de-cision support systems. Health and Technology, 12(4), 713-727. https://doi.org/10.1007/s12553-022-00672-9
Peng, C., Yang, X., Yu, Z., Bian, J., Hogan, W. R., & Wu, Y. (2023). Clinical concept and rela-tion extraction using prompt-based machine reading comprehension. Journal of the American Medical Informatics Association, 30(9), 1486-1493. https://doi.org/10.1093/jamia/ocad107
QuickStats: Management of Patient Health Information Functions Among Office-Based Physi-cians With and Without a Certified Electronic Health Record (EHR) System—National Electronic Health Records Survey, United States, 2018. (2020). MMWR Morbidity and Mortality Weekly Report, 69, 1381. https://doi.org/10.15585/mmwr.mm6938a8
Quimbaya, A. P., Múnera, A. S., Rivera, R. A. G., Rodríguez, J. C. D., Velandia, O. M. M., Peña, A. A. G., & Labbé, C. (2016). Named entity recognition over electronic health records through a combined dictionary-based approach. Procedia Computer Science, 100, 55-61. https://doi.org/10.1016/j.procs.2016.09.123
Samwald, M., Fehre, K., de Bruin, J., & Adlassnig, K.-P. (2012). The Arden Syntax standard for clinical decision support: Experiences and directions. Journal of Biomedical Infor-matics, 45(4), 711-718. https://doi.org/10.1016/j.jbi.2012.02.001
Saver, J. L., Fonarow, G. C., Smith, E. E., Reeves, M. J., Grau-Sepulveda, M. V., Pan, W., Ol-son, D. M., Hernandez, A. F., Peterson, E. D., & Schwamm, L. H. (2013). Time to Treatment With Intravenous Tissue Plasminogen Activator and Outcome From Acute Is-chemic Stroke. Journal of the American Medical Association, 309(23), 2480–2488. https://doi.org/10.1001/jama.2013.6959
Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2020). A meta-analysis of teaching and learning computer programming: Effective instructional approaches and conditions. Computers in Human Behavior, 109, 106349. https://doi.org/10.1016/j.chb.2020.106349
Shen, L., Wright, A., Lee, L. S., Jajoo, K., Nayor, J., & Landman, A. (2020). Clinical decision support system, using expert consensus-derived logic and natural language processing, decreased sedation-type order errors for patients undergoing endoscopy. Journal of the American Medical Informatics Association, 28(1), 95-103. https://doi.org/10.1093/jamia/ocaa250
Sottara, D., Greenes, R. A., Haug, P. J., Potrich, E., & Ebert, M. (2014). The health eDecisions authoring environment for shareable clinical decision support artifacts. Challenge+ DC@ RuleML.
Strasberg, H. R., Rhodes, B., Del Fiol, G., Jenders, R. A., Haug, P. J., & Kawamoto, K. (2021). Contemporary clinical decision support standards using health level seven inter-national fast healthcare interoperability resources. Journal of the American Medical In-formatics Association, 28(8), 1796-1806. https://doi.org/10.1093/jamia/ocab070
Sun, Q., & Bhatia, P. (2021). Neural entity recognition with gazetteer based fusion (arXiv:2105.13225). arXiv. https://doi.org/10.48550/arXiv.2105.13225
Sung, S.-F., Chen, K., Wu, D. P., Hung, L.-C., Su, Y.-H., & Hu, Y.-H. (2018). Applying natural language processing techniques to develop a task-specific EMR interface for timely stroke thrombolysis: A feasibility study. International Journal of Medical Informatics, 112, 149-157. https://doi.org/10.1016/j.ijmedinf.2018.02.005
Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020). An overview of clinical decision support systems: Benefits, risks, and strate-gies for success. Npj Digital Medicine, 3(1), Article 1. https://doi.org/10.1038/s41746-020-0221-y
Uslu, A., & Stausberg, J. (2021). Value of the electronic medical record for hospital care: Up-date from the literature. Journal of Medical Internet Research, 23(12), e26323. https://doi.org/10.2196/26323
Wang, Y., Wang, L., Rastegar-Mojarad, M., Moon, S., Shen, F., Afzal, N., Liu, S., Zeng, Y., Mehrabi, S., Sohn, S., & Liu, H. (2018). Clinical information extraction applications: A literature review. Journal of Biomedical Informatics, 77, 34-49. https://doi.org/10.1016/j.jbi.2017.11.011
Wohlgemut, J. M., Pisirir, E., Kyrimi, E., Stoner, R. S., Marsh, W., Perkins, Z. B., & Tai, N. R. M. (2023). Methods used to evaluate usability of mobile clinical decision support sys-tems for healthcare emergencies: A systematic review and qualitative synthesis. Journal of the American Medical Informatics Association Open, 6(3), ooad051. https://doi.org/10.1093/jamiaopen/ooad051
Zhao, X., Ding, H., & Feng, Z. (2021). GLaRA: Graph-based labeling rule augmentation for weakly supervised named entity recognition. Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, 3636-3649. https://doi.org/10.18653/v1/2021.eacl-main.318
Zhou, Y., Ju, C., Caufield, J. H., Shih, K., Chen, C., Sun, Y., Chang, K.-W., Ping, P., & Wang, W. (2021). Clinical named entity recognition using contextualized token representations (arXiv:2106.12608). arXiv. https://doi.org/10.48550/arXiv.2106.12608
電子全文 電子全文(網際網路公開日期:20290626)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top