|
Adnan, K., Akbar, R., Khor, S.W., Ali, A.B.A., 2020a. Role and Challenges of Unstructured Big Data in Healthcare, in: Sharma, N., Chakrabarti, A., Balas, V.E. (Eds.), Data Management, Analytics and Innovation. Springer, Singapore, pp. 301–323. https://doi.org/10.1007/978-981-32-9949-8_22 Adnan, K., Akbar, R., Khor, S.W., Ali, A.B.A., 2020b. Role and Challenges of Unstructured Big Data in Healthcare, in: Sharma, N., Chakrabarti, A., Balas, V.E. (Eds.), Data Management, Analytics and Innovation. Springer Singapore, Singapore, pp. 301–323. Agrawal, M., Hegselmann, S., Lang, H., Kim, Y., Sontag, D., 2022. Large language models are few-shot clinical information extractors, in: Goldberg, Y., Kozareva, Z., Zhang, Y. (Eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2022, Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, pp. 1998–2022. https://doi.org/10.18653/v1/2022.emnlp-main.130 Aronson, A.R., 2001. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proc AMIA Symp 17–21. Azaria, A., Mitchell, T., 2023. The Internal State of an LLM Knows When It’s Lying, in: Bouamor, H., Pino, J., Bali, K. (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2023. Presented at the Findings 2023, Association for Computational Linguistics, Singapore, pp. 967–976. https://doi.org/10.18653/v1/2023.findings-emnlp.68 Bhoi, S., Lee, M.L., Hsu, W., Fang, H.S.A., Tan, N.C., 2021. Personalizing Medication Recommendation with a Graph-Based Approach. ACM Trans. Inf. Syst. 40, 55:1-55:23. https://doi.org/10.1145/3488668 Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D., 2020. Language Models are Few-Shot Learners, in: Advances in Neural Information Processing Systems. Curran Associates, Inc., pp. 1877–1901. Buckland, R.S., Hogan, J.W., Chen, E.S., 2021. Selection of Clinical Text Features for Classifying Suicide Attempts. AMIA Annu Symp Proc 2020, 273–282. Chang, Y., Lo, K., Goyal, T., Iyyer, M., 2023. BooookScore: A systematic exploration of book- length summarization in the era of LLMs. Presented at the The Twelfth International Conference on Learning Representations. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H.W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B., Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S., Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal, S., Omernick, M., Dai, A.M., Pillai, T.S., Pellat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., Fiedel, N., 2023. PaLM: Scaling Language Modeling with Pathways. Journal of Machine Learning Research 24, 1–113. Chuang, Y.-N., Tang, R., Jiang, X., Hu, X., 2024. SPeC: A Soft Prompt-Based Calibration on Performance Variability of Large Language Model in Clinical Notes Summarization. Journal of Biomedical Informatics 151, 104606. https://doi.org/10.1016/j.jbi.2024.104606 Fan, L., Li, L., Ma, Z., Lee, S., Yu, H., Hemphill, L., 2023. A Bibliometric Review of Large Language Models Research from 2017 to 2023. arXiv.org. https://doi.org/10.48550/arXiv.2304.02020 Gao, S., Alawad, M., Young, M.T., Gounley, J., Schaefferkoetter, N., Yoon, H.J., Wu, X.-C., Durbin, E.B., Doherty, J., Stroup, A., Coyle, L., Tourassi, G., 2021. Limitations of Transformers on Clinical Text Classification. IEEE J Biomed Health Inform 25, 3596– 3607. https://doi.org/10.1109/JBHI.2021.3062322 Geva, M., Schuster, R., Berant, J., Levy, O., 2021. Transformer Feed-Forward Layers Are Key- Value Memories, in: Moens, M.-F., Huang, X., Specia, L., Yih, S.W. (Eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2021, Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, pp. 5484–5495. https://doi.org/10.18653/v1/2021.emnlp-main.446 Goel, A., Gueta, A., Gilon, O., Liu, C., Erell, S., Nguyen, L.H., Hao, X., Jaber, B., Reddy, S., Kartha, R., Steiner, J., Laish, I., Feder, A., 2023. LLMs Accelerate Annotation for Medical Information Extraction, in: Proceedings of the 3rd Machine Learning for Health Symposium. Presented at the Machine Learning for Health (ML4H), PMLR, pp. 82–100. Golmaei, S.N., Luo, X., 2021. DeepNote-GNN: predicting hospital readmission using clinical notes and patient network, in: Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics. Presented at the BCB ’21: 12th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, ACM, Gainesville Florida, pp. 1–9. https://doi.org/10.1145/3459930.3469547 Hadi, M.U., Tashi, Q.A., Qureshi, R., Shah, A., Muneer, A., Irfan, M., Zafar, A., Shaikh, M.B., Akhtar, N., Wu, J., Mirjalili, S., 2023. Large Language Models: A Comprehensive Survey of its Applications, Challenges, Limitations, and Future Prospects (preprint). https://doi.org/10.36227/techrxiv.23589741.v4 Hao, C., Runfeng, X., Xiangyang, C., Zhou, Y., Xin, W., Zhanwei, X., Kai, Z., 2023. LKPNR: LLM and KG for Personalized News Recommendation Framework. He, Y., Wang, C., Li, N., Zeng, Z., 2020. Attention and Memory-Augmented Networks for Dual-View Sequential Learning, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Presented at the KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ACM, Virtual Event CA USA, pp. 125–134. https://doi.org/10.1145/3394486.3403055 Heo, T.-S., Yoo, Y., Park, Y., Jo, B., Lee, K., Kim, K., 2021. Medical Code Prediction from Discharge Summary: Document to Sequence BERT using Sequence Attention, in: 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). pp. 1239–1244. https://doi.org/10.1109/ICMLA52953.2021.00201 Hernandez, E., Li, B.Z., Andreas, J., 2023. Inspecting and Editing Knowledge Representations in Language Models. Hossain, E., Rana, R., Higgins, N., Soar, J., Barua, P.D., Pisani, A.R., Turner, K., 2023. Natural Language Processing in Electronic Health Records in relation to healthcare decision- making: A systematic review. Comput Biol Med 155, 106649. https://doi.org/10.1016/j.compbiomed.2023.106649 Hu, Y., Chen, Q., Du, J., Peng, X., Keloth, V.K., Zuo, X., Zhou, Y., Li, Z., Jiang, X., Lu, Z., Roberts, K., Xu, H., 2024. Improving large language models for clinical named entity recognition via prompt engineering. Journal of the American Medical Informatics Association ocad259. https://doi.org/10.1093/jamia/ocad259 Huang, K., Altosaar, J., Ranganath, R., 2020. ClinicalBERT: Modeling Clinical Notes and Predicting Hospital Readmission. Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., Casas, D. de las, Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E., 2023. Mistral 7B. https://doi.org/10.48550/arXiv.2310.06825 Johnson, A.E., Pollard, T.J., Shen, L., Lehman, L.H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Anthony Celi, L., Mark, R.G., 2016. MIMIC-III, a freely accessible critical care database. Scientific data 3, 1–9. Koh, J.Y., Fried, D., Salakhutdinov, R., 2023a. Generating Images with Multimodal Language Models. Presented at the Thirty-seventh Conference on Neural Information Processing Systems. Koh, J.Y., Salakhutdinov, R., Fried, D., 2023b. Grounding Language Models to Images for Multimodal Inputs and Outputs, in: Proceedings of the 40th International Conference on Machine Learning. Presented at the International Conference on Machine Learning, PMLR, pp. 17283–17300. Landolsi, M.Y., Hlaoua, L., Ben Romdhane, L., 2023. Information extraction from electronic medical documents: state of the art and future research directions. Knowl Inf Syst 65, 463– 516. https://doi.org/10.1007/s10115-022-01779-1 Le, H., Tran, T., Venkatesh, S., 2018. Dual Control Memory Augmented Neural Networks for Treatment Recommendations, in: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (Eds.), Advances in Knowledge Discovery and Data Mining. Springer International Publishing, Cham, pp. 273–284. https://doi.org/10.1007/978-3-319-93040- 4_22 Lee, J., Yoon, W., Kim, Sungdong, Kim, D., Kim, Sunkyu, So, C.H., Kang, J., 2020. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36, 1234–1240. https://doi.org/10.1093/bioinformatics/btz682 Li, Xiaopeng, Li, S., Song, S., Yang, J., Ma, J., Yu, J., 2024. PMET: Precise Model Editing in a Transformer. Proceedings of the AAAI Conference on Artificial Intelligence 38, 18564– 18572. https://doi.org/10.1609/aaai.v38i17.29818 Li, Xiang, Liang, S., Hou, Y., Ma, T., 2024. StratMed: Relevance stratification between biomedical entities for sparsity on medication recommendation. Knowledge-Based Systems 284, 111239. https://doi.org/10.1016/j.knosys.2023.111239 Liao, C.-F., 2023. Graph-based Similar Visits Enhanced Representation for Medication Recommendation. Liu, Q., Wu, X., Zhao, X., Zhu, Y., Zhang, Z., Tian, F., Zheng, Y., 2024. Large Language Model Distilling Medication Recommendation Model. https://doi.org/10.48550/arXiv.2402.02803 Liu, S., Wang, X., Du, J., Hou, Y., Zhao, X., Xu, H., Wang, H., Xiang, Y., Tang, B., 2023. SHAPE: A Sample-Adaptive Hierarchical Prediction Network for Medication Recommendation. IEEE J. Biomed. Health Inform. 27, 6018–6028. https://doi.org/10.1109/JBHI.2023.3320139 Lu, Q., Nguyen, T.H., Dou, D., 2021. Predicting Patient Readmission Risk from Medical Text via Knowledge Graph Enhanced Multiview Graph Convolution, in: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Presented at the SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, Virtual Event Canada, pp. 1990–1994. https://doi.org/10.1145/3404835.3463062 Martinez-Rodriguez, J.L., Hogan, A., Lopez-Arevalo, I., 2020. Information extraction meets the Semantic Web: A survey. Semantic Web 11, 255–335. https://doi.org/10.3233/SW- 180333 Meng, K., Bau, D., Andonian, A., Belinkov, Y., 2022a. Locating and Editing Factual Associations in GPT. Advances in Neural Information Processing Systems 35, 17359– 17372. Meng, K., Sharma, A.S., Andonian, A.J., Belinkov, Y., Bau, D., 2022b. Mass-Editing Memory in a Transformer. Presented at the The Eleventh International Conference on Learning Representations. Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., Gao, J., 2024. Large Language Models: A Survey. Mitchell, E., Lin, C., Bosselut, A., Finn, C., Manning, C.D., 2021. Fast Model Editing at Scale. Presented at the International Conference on Learning Representations. Mitchell, E., Lin, C., Bosselut, A., Manning, C.D., Finn, C., 2022. Memory-Based Model Editing at Scale, in: Proceedings of the 39th International Conference on Machine Learning. Presented at the International Conference on Machine Learning, PMLR, pp. 15817–15831. Mulyadi, A.W., Suk, H.-I., 2023. KindMed: Knowledge-Induced Medicine Prescribing Network for Medication Recommendation. Nuthakki, S., Neela, S., Gichoya, J.W., Purkayastha, S., 2019. Natural language processing of MIMIC-III clinical notes for identifying diagnosis and procedures with neural networks. https://doi.org/10.48550/arXiv.1912.12397 OpenAI, 2023. GPT-4 Technical Report. https://doi.org/10.48550/ARXIV.2303.08774 Pal, K., Sun, J., Yuan, A., Wallace, B., Bau, D., 2023. Future Lens: Anticipating SubsequentTokens from a Single Hidden State, in: Jiang, J., Reitter, D., Deng, S. (Eds.), Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL). Presented at the CoNLL 2023, Association for Computational Linguistics, Singapore, pp. 548–560. https://doi.org/10.18653/v1/2023.conll-1.37 Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho, S., Biderman, S., Cao, H., Cheng, X., Chung, M., Derczynski, L., Du, X., Grella, M., Gv, K., He, X., Hou, H., Kazienko, P., Kocon, J., Kong, J., Koptyra, B., Lau, H., Lin, J., Mantri, K.S.I., Mom, F., Saito, A., Song, G., Tang, X., Wind, J., Woźniak, S., Zhang, Z., Zhou, Q., Zhu, J., Zhu, R.-J., 2023. RWKV: Reinventing RNNs for the Transformer Era, in: Bouamor, H., Pino, J., Bali, K. (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2023. Presented at the Findings 2023, Association for Computational Linguistics, Singapore, pp. 14048–14077. https://doi.org/10.18653/v1/2023.findings-emnlp.936 Portet, F., Reiter, E., Gatt, A., Hunter, J., Sripada, S., Freer, Y., Sykes, C., 2009. Automatic generation of textual summaries from neonatal intensive care data. Artificial Intelligence 173, 789–816. https://doi.org/10.1016/j.artint.2008.12.002 Shang, J., Ma, T., Xiao, C., Sun, J., 2019a. Pre-training of Graph Augmented Transformers for Medication Recommendation, in: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Presented at the Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}, International Joint Conferences on Artificial Intelligence Organization, Macao, China, pp. 5953–5959. https://doi.org/10.24963/ijcai.2019/825 Shang, J., Xiao, C., Ma, T., Li, H., Sun, J., 2019b. GAMENet: graph augmented memory networks for recommending medication combination, in: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI Press, Honolulu, Hawaii, USA, pp. 1126–1133. https://doi.org/10.1609/aaai.v33i01.33011126 Sheikhalishahi, S., Miotto, R., Dudley, J.T., Lavelli, A., Rinaldi, F., Osmani, V., 2019. Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review. JMIR Med Inform 7, e12239. https://doi.org/10.2196/12239 Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., Payne, P., Seneviratne, M., Gamble, P., Kelly, C., Babiker, A., Schärli, N., Chowdhery, A., Mansfield, P., Demner-Fushman, D., Agüera y Arcas, B., Webster, D., Corrado, G.S., Matias, Y., Chou, K., Gottweis, J., Tomasev, N., Liu, Y., Rajkomar, A., Barral, J., Semturs, C., Karthikesalingam, A., Natarajan, V., 2023. Largelanguage models encode clinical knowledge. Nature 620, 172–180. https://doi.org/10.1038/s41586-023-06291-2 Sondhi, P., Sun, J., Tong, H., Zhai, C., 2012. SympGraph: a framework for mining clinical notes through symptom relation graphs, in: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Presented at the KDD ’12: The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Beijing China, pp. 1167–1175. https://doi.org/10.1145/2339530.2339712 Sun, H., Xie, S., Li, S., Chen, Y., Wen, J.-R., Yan, R., 2022. Debiased, Longitudinal and Coordinated Drug Recommendation through Multi-Visit Clinic Records. Advances in Neural Information Processing Systems 35, 27837–27849. Tahabi, F.M., Storey, S., Luo, X., 2023a. SymptomGraph: Identifying Symptom Clusters from Narrative Clinical Notes using Graph Clustering, in: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing. Presented at the SAC ’23: 38th ACM/SIGAPP Symposium on Applied Computing, ACM, Tallinn Estonia, pp. 518–527. https://doi.org/10.1145/3555776.3577685 Tahabi, F.M., Storey, S., Luo, X., 2023b. SymptomGraph: Identifying Symptom Clusters from Narrative Clinical Notes using Graph Clustering, in: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, SAC ’23. Association for Computing Machinery, New York, NY, USA, pp. 518–527. https://doi.org/10.1145/3555776.3577685 Tan, Y., Kong, C., Yu, L., Li, P., Chen, C., Zheng, X., Hertzberg, V.S., Yang, C., 2022. 4SDrug: Symptom-based Set-to-set Small and Safe Drug Recommendation, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Presented at the KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ACM, Washington DC USA, pp. 3970–3980. https://doi.org/10.1145/3534678.3539089 Tatonetti, N.P., Ye, P.P., Daneshjou, R., Altman, R.B., 2012. Data-Driven Prediction of Drug Effects and Interactions. Sci Transl Med 4, 125ra31. https://doi.org/10.1126/scitranslmed.3003377 Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., Lample, G., 2023. LLaMA: Open and Efficient Foundation Language Models. van Aken, B., Papaioannou, J.-M., Mayrdorfer, M., Budde, K., Gers, F., Loeser, A., 2021. Clinical Outcome Prediction from Admission Notes using Self-Supervised Knowledge Integration, in: Merlo, P., Tiedemann, J., Tsarfaty, R. (Eds.), Proceedings of the 16thConference of the European Chapter of the Association for Computational Linguistics: Main Volume. Presented at the EACL 2021, Association for Computational Linguistics, Online, pp. 881–893. https://doi.org/10.18653/v1/2021.eacl-main.75 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I., 2017. Attention is All you Need, in: Advances in Neural Information Processing Systems. Curran Associates, Inc. Wang, Y., Chen, W., Pi, D., Yue, L., 2021. Adversarially regularized medication recommendation model with multi-hop memory network. Knowl. Inf. Syst. 63, 125–142. https://doi.org/10.1007/s10115-020-01513-9 Wang, Y., Wang, L., Rastegar-Mojarad, M., Moon, S., Shen, F., Afzal, N., Liu, S., Zeng, Y., Mehrabi, S., Sohn, S., Liu, H., 2018. Clinical information extraction applications: A literature review. J Biomed Inform 77, 34–49. https://doi.org/10.1016/j.jbi.2017.11.011 Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Metzler, D., Chi, E.H., Hashimoto, T., Vinyals, O., Liang, P., Dean, J., Fedus, W., 2022. Emergent Abilities of Large Language Models. Transactions on Machine Learning Research. Wu, J., Dong, Y., Gao, Z., Gong, T., Li, C., 2023a. Dual Attention and Patient Similarity Network for drug recommendation. Bioinformatics 39, btad003. https://doi.org/10.1093/bioinformatics/btad003 Wu, J., He, K., Mao, R., Li, C., Cambria, E., 2023b. MEGACare: Knowledge-guided multi- view hypergraph predictive framework for healthcare. Information Fusion 100, 101939. https://doi.org/10.1016/j.inffus.2023.101939 Wu, R., Qiu, Z., Jiang, J., Qi, G., Wu, X., 2022. Conditional Generation Net for Medication Recommendation, in: Proceedings of the ACM Web Conference 2022. Presented at the WWW ’22: The ACM Web Conference 2022, ACM, Virtual Event, Lyon France, pp. 935– 945. https://doi.org/10.1145/3485447.3511936 Yang, C., Xiao, C., Glass, L., Sun, J., 2021a. Change Matters: Medication Change Prediction with Recurrent Residual Networks. Presented at the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 3728–3734. https://doi.org/10.24963/ijcai.2021/513 Yang, C., Xiao, C., Ma, F., Glass, L., Sun, J., 2021b. SafeDrug: Dual Molecular Graph Encoders for Recommending Effective and Safe Drug Combinations, in: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Presented at the Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21},International Joint Conferences on Artificial Intelligence Organization, Montreal, Canada, pp. 3735–3741. https://doi.org/10.24963/ijcai.2021/514 Yang, N., Zeng, K., Wu, Q., Yan, J., 2023. MoleRec: Combinatorial Drug Recommendation with Substructure-Aware Molecular Representation Learning, in: Proceedings of the ACM Web Conference 2023. Presented at the WWW ’23: The ACM Web Conference 2023, ACM, Austin TX USA, pp. 4075–4085. https://doi.org/10.1145/3543507.3583872 Yang, X., Chen, A., PourNejatian, N., Shin, H.C., Smith, K.E., Parisien, C., Compas, C., Martin, C., Costa, A.B., Flores, M.G., Zhang, Y., Magoc, T., Harle, C.A., Lipori, G., Mitchell, D.A., Hogan, W.R., Shenkman, E.A., Bian, J., Wu, Y., 2022. A large language model for electronic health records. NPJ Digit Med 5, 194. https://doi.org/10.1038/s41746-022- 00742-2 Zeng, A., Liu, X., Du, Z., Wang, Z., Lai, H., Ding, M., Yang, Z., Xu, Y., Zheng, W., Xia, X., Tam, W.L., Ma, Z., Xue, Y., Zhai, J., Chen, W., Liu, Z., Zhang, P., Dong, Y., Tang, J., 2023. GLM-130B: AN OPEN BILINGUAL PRE-TRAINED. Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li, X., Lin, X.V., Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D., Koura, P.S., Sridhar, A., Wang, T., Zettlemoyer, L., 2022. OPT: Open Pre-trained Transformer Language Models. Zhang, Y., Chen, R., Tang, J., Stewart, W.F., Sun, J., 2017. LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for Multimorbidity, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17. Association for Computing Machinery, New York, NY, USA, pp. 1315–1324. https://doi.org/10.1145/3097983.3098109 Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., Liu, P., Nie, J.-Y., Wen, J.-R., 2023. A Survey of Large Language Models. Zhu, F., Dai, D., Sui, Z., 2024. Language Models Understand Numbers, at Least Partially. arXiv e-prints. https://doi.org/10.48550/arXiv.2401.03735
|