|
Alain, G., Bengio, Y., Yao, L., Yosinski, J., Thibodeau-Laufer, E., Zhang, S., Vincent, P., 2015. GSNs : Generative Stochastic Networks. Anaby-Tavor, A., Carmeli, B., Goldbraich, E., Kantor, A., Kour, G., Shlomov, S., Tepper, N., Zwerdling, N., 2020. Do Not Have Enough Data? Deep Learning to the Rescue! Proc. AAAI Conf. Artif. Intell. 34, 7383–7390. https://doi.org/10.1609/aaai.v34i05.6233 Bayer, M., Kaufhold, M.-A., Reuter, C., 2023. A Survey on Data Augmentation for Text Classification. ACM Comput. Surv. 55, 1–39. https://doi.org/10.1145/3544558 Bengio, Y., Mesnil, G., Dauphin, Y., Rifai, S., n.d. Better Mixing via Deep Representations. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 16, 321–357. https://doi.org/10.1613/jair.953 Chen, H., Liu, X., Yin, D., Tang, J., 2017. A Survey on Dialogue Systems: Recent Advances and New Frontiers. ACM SIGKDD Explor. Newsl. 19, 25–35. https://doi.org/10.1145/3166054.3166058 Chen, Z., Liu, B., Hsu, M., Castellanos, M., Ghosh, R., n.d. Identifying Intention Posts in Discussion Forums. Cheung, T.-H., Yeung, D.-Y., 2021. MODALS: MODALITY-AGNOSTIC AUTOMATED DATA AUGMENTATION IN THE LATENT SPACE. Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A., Leroy, D., Doumouro, C., Gisselbrecht, T., Caltagirone, F., Lavril, T., Primet, M., Dureau, J., 2018. Snips Voice Platform: an embedded Spoken Language Understanding system for private-by-design voice interfaces. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. DeVries, T., Taylor, G.W., 2017. Dataset Augmentation in Feature Space. Feng, S.Y., Gangal, V., Wei, J., Chandar, S., Vosoughi, S., Mitamura, T., Hovy, E., 2021. A Survey of Data Augmentation Approaches for NLP. Genkin, A., Lewis, D.D., Madigan, D., 2007. Large-Scale Bayesian Logistic Regression for Text Categorization. Technometrics 49, 291–304. https://doi.org/10.1198/004017007000000245 Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative Adversarial Networks. Haffner, P., Tur, G., Wright, J.H., 2003. Optimizing SVMs for complex call classification, in: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03). Presented at the International Conference on Acoustics, Speech and Signal Processing (ICASSP’03), IEEE, Hong Kong, China, p. I-632-I–635. https://doi.org/10.1109/ICASSP.2003.1198860 Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Comput. 9, 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 Kim, Y., 2014. Convolutional Neural Networks for Sentence Classification, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Presented at the Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Doha, Qatar, pp. 1746–1751. https://doi.org/10.3115/v1/D14-1181 Kingma, D.P., Ba, J., 2017. Adam: A Method for Stochastic Optimization. Kingma, D.P., Welling, M., 2022. Auto-Encoding Variational Bayes. Kobayashi, S., 2018. Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). Presented at the Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), Association for Computational Linguistics, New Orleans, Louisiana, pp. 452–457. https://doi.org/10.18653/v1/N18-2072 Kumar, V., Choudhary, A., Cho, E., 2021. Data Augmentation using Pre-trained Transformer Models. Kumar, V., Glaude, H., de Lichy, C., Campbell, W., 2019. A Closer Look At Feature Space Data Augmentation For Few-Shot Intent Classification. Larson, S., Mahendran, A., Peper, J.J., Clarke, C., Lee, A., Hill, P., Kummerfeld, J.K., Leach, K., Laurenzano, M.A., Tang, L., Mars, J., 2019. An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction. Lee, K., Guu, K., He, L., Dozat, T., Chung, H.W., 2021. Neural Data Augmentation via Example Extrapolation. Li, X., Roth, D., 2002. Learning question classifiers, in: Proceedings of the 19th International Conference on Computational Linguistics -. Presented at the the 19th international conference, Association for Computational Linguistics, Taipei, Taiwan, pp. 1–7. https://doi.org/10.3115/1072228.1072378 Lin, Y.-T., Papangelis, A., Kim, S., Lee, S., Hazarika, D., Namazifar, M., Jin, D., Liu, Y., Hakkani-Tur, D., 2023. Selective In-Context Data Augmentation for Intent Detection using Pointwise V-Information. Liu, J., Li, Y., Lin, M., 2019. Review of Intent Detection Methods in the Human-Machine Dialogue System. J. Phys. Conf. Ser. 1267, 012059. https://doi.org/10.1088/1742-6596/1267/1/012059 Liu T., Ding X., Qian Y., Chen Y., 2017. Identification method of user’s travel consumption intention in chatting robot. Sci. Sin. Informationis 47, 997. https://doi.org/10.1360/N112016-00306 Louvan, S., Magnini, B., 2020. Simple is Better! Lightweight Data Augmentation for Low Resource Slot Filling and Intent Classification. McCallum, A., Nigam, K., n.d. A Comparison of Event Models for Naive Bayes Text Classification. Ozair, S., Bengio, Y., 2014. Deep Directed Generative Autoencoders. Pan, S.J., Yang, Q., 2010. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359. https://doi.org/10.1109/TKDE.2009.191 Pearson, K. 1857-1936, n.d. On the theory of contingency and its relation to association and normal correlation. Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L., 2018. Deep Contextualized Word Representations, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Presented at the Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), Association for Computational Linguistics, New Orleans, Louisiana, pp. 2227–2237. https://doi.org/10.18653/v1/N18-1202 Popescu, M.-C., Balas, V.E., Perescu-Popescu, L., Mastorakis, N., 2009. Multilayer Perceptron and Neural Networks 8. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., n.d. Language Models are Unsupervised Multitask Learners. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J., n.d. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Ravuri, S., Stolcke, A., 2015. Recurrent neural network and LSTM models for lexical utterance classification, in: Interspeech 2015. Presented at the Interspeech 2015, ISCA, pp. 135–139. https://doi.org/10.21437/Interspeech.2015-42 Santoso, N., Wibowo, W., Hikmawati, H., 2019. Integration of synthetic minority oversampling technique for imbalanced class. Indones. J. Electr. Eng. Comput. Sci. 13, 102. https://doi.org/10.11591/ijeecs.v13.i1.pp102-108 Schlüter, J., Grill, T., n.d. EXPLORING DATA AUGMENTATION FOR IMPROVED SINGING VOICE DETECTION WITH NEURAL NETWORKS. Sennrich, R., Haddow, B., Birch, A., 2016. Improving Neural Machine Translation Models with Monolingual Data, in: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Presented at the Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Berlin, Germany, pp. 86–96. https://doi.org/10.18653/v1/P16-1009 Tiedemann, J., n.d. OPUS – Parallel Corpora for Everyone. Wei, J., Zou, K., 2019. EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks. Xia, C., Xiong, C., Yu, P., Socher, R., 2020. Composed Variational Natural Language Generation for Few-shot Intents, in: Findings of the Association for Computational Linguistics: EMNLP 2020. Presented at the Findings of the Association for Computational Linguistics: EMNLP 2020, Association for Computational Linguistics, Online, pp. 3379–3388. https://doi.org/10.18653/v1/2020.findings-emnlp.303 Yang, Y., Malaviya, C., Fernandez, J., Swayamdipta, S., Le Bras, R., Wang, J.-P., Bhagavatula, C., Choi, Y., Downey, D., 2020. Generative Data Augmentation for Commonsense Reasoning, in: Findings of the Association for Computational Linguistics: EMNLP 2020. Presented at the Findings of the Association for Computational Linguistics: EMNLP 2020, Association for Computational Linguistics, Online, pp. 1008–1025. https://doi.org/10.18653/v1/2020.findings-emnlp.90 Ye, J., Xu, N., Wang, Y., Zhou, J., Zhang, Q., Gui, T., Huang, X., 2024. LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named Entity Recognition. Zhang, J., Bui, T., Yoon, S., Chen, X., Liu, Z., Xia, C., Tran, Q.H., Chang, W., Yu, P., 2021. Few-Shot Intent Detection via Contrastive Pre-Training and Fine-Tuning, in: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Presented at the Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, pp. 1906–1912. https://doi.org/10.18653/v1/2021.emnlp-main.144 Zhang, J., Hashimoto, K., Liu, W., Wu, C.-S., Wan, Y., Yu, P., Socher, R., Xiong, C., 2020. Discriminative Nearest Neighbor Few-Shot Intent Detection by Transferring Natural Language Inference, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Presented at the Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Online, pp. 5064–5082. https://doi.org/10.18653/v1/2020.emnlp-main.411 Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., Fidler, S., 2015. Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books, in: 2015 IEEE International Conference on Computer Vision (ICCV). Presented at the 2015 IEEE International Conference on Computer Vision (ICCV), IEEE, Santiago, Chile, pp. 19–27. https://doi.org/10.1109/ICCV.2015.11
|