跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李紹晨
研究生(外文):Shao-Chen Lee
論文名稱:應力工程和表面能對p型氧化錫(SnO)寬能隙相穩定化的影響
論文名稱(外文):Stabiliazation of Wide-band Gap Phase in p-Type Tin monoxide (SnO) by Strained Engineering and Surface Energy
指導教授:唐英瓚
指導教授(外文):Ying-Tsang Tang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:60
中文關鍵詞:氧化物半導體P型氧化物半導體模擬計算第一原理計算
外文關鍵詞:Oxide semiconductorP-type oxide semiconductorSimulation calculationFirst principles calculation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化錫(SnOX)是一種可隨著氧濃度的變化可被製作成n/p MOS的通道材料,Sn4+的氧化物具有寬能隙且為理想的N型半導體,而Sn2+氧化物雖為p型,但因能隙偏窄(~0.7 eV),故難以被整合到IC晶片裡。現今大多數對SnO是以該窄能隙相為基礎再發展,然而在2021年,以色列內蓋夫本-古里安大學的L.Nguyen等人研究發現SnO存在著特別的寬能隙(>1.1eV)相,但這些相並不穩定。為了穩定這些相,必須有額外的能量被加入。在這項工作中我們透過第一原理計算研究應力與尺寸效應對SnO寬能隙相的影響,經由分析不同晶相的自由能,我們得出M2(P21/c)、O2(Pbcm)、O3(Pmn21)是薄膜寬能隙相的最佳候選者。另外,我們也考慮了當SnO成長在氮化鈦(TiN)電極時產生的界面能影響,為實驗做出薄膜寬能隙SnO提供具方向性的成相預測。再者,我們施加額外的應力,加速薄膜生成寬能隙相的機率。為了保證寬能隙相能維持好的電性,我們計算自發型電洞缺陷(hole-killer)生成的機率,並以能帶校準的方式確認了這些寬能隙相是可作為p型摻雜使用。為了使該模型更具實用性,我們考慮這幾個重點相的溫度與壓力關係,使其能輔助製程上得到完好且高品質的寬能隙相。上述工作提供了在製程實驗上生成寬能隙PMOS所需的條件,且為氧化物半導體邏輯元件的製作開啟新的方法。
Tin oxide (SnOx) is a channel material that can be fabricated into n/p MOS structures depending on its oxygen concentration. The oxide of Sn4+ exhibits a wide bandgap and is an ideal N-type semiconductor, whereas Sn2+ oxide, although p-type, has a narrow bandgap (~0.7 eV), making it difficult to integrate into IC chips. Most current research on SnO is based on this narrow bandgap phase. However, in 2021, researchers, including L. Nguyen from Ben-Gurion University of the Negev, Israel, discovered a special wide bandgap phase of SnO (>1.1 eV). Still, these phases are unstable and require additional energy input for stabilization. In this work, we investigate the effects of stress and size on the wide bandgap phase of SnO through first-principles calculations. By analyzing the free energies of different crystal phases, we identify M2 (P21/c), O2 (Pbcm), and O3 (Pmn21) as the optimal candidates for the wide bandgap phase of thin films. Additionally, we consider the interface energy effects generated when SnO grows on titanium nitride (TiN) electrodes, providing directional phase predictions for wide bandgap SnO thin films for experimental purposes. Furthermore, we apply additional stress to accelerate the probability of thin film formation into the wide bandgap phase. To ensure good electrical properties of the wide bandgap phase, we calculate the probability of spontaneous hole-killer defect generation and confirm these wide bandgap phases as suitable for p-type doping through bandgap calibration. To enhance the practicality of the model, we consider the temperature and pressure relationships of these key phases to assist in achieving well-formed and high-quality wide bandgap phases during the fabrication process. This work provides insights into the conditions required for the experimental generation of wide bandgap PMOS and opens up new avenues for the fabrication of oxide semiconductor logic elements.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 序論與文獻回顧 1
1.1 新興氧化物半導體通道材料(Emerging oxide semiconductor channel materials) 1
1.1.1 n型氧化物半導體通道材料(n-type oxide semiconductor channel materials) 1
1.1.1.1 銦鎵鋅氧化物薄膜電晶體(IGZO TFTs) 2
1.1.1.2 銦氧化物薄膜電晶體(In2O3 TFTs) 2
1.1.1.3 鎵氧化物薄膜電晶體(Ga2O3 TFTs) 3
1.1.1.4二氧化錫薄膜電晶體(SnO2 TFTs) 4
1.1.2 p型氧化物半導體通道材料(p-type oxide semiconductor channel materials) 4
1.1.2.1 氧化鎳薄膜電晶體(NiO TFTs) 5
1.1.2.2 氧化銅薄膜電晶體(Cu2O TFTs) 5
1.2 氧化錫薄膜電晶體 (SnO TFTs) 5
第二章 理論模擬計算原理 15
2.1 第一原理計算 15
2.1.1 密度泛函理論 (Density Functional Theory, DFT) 15
2.1.1.1 局部密度近似法 (Local Density Approximation, LDA) 16
2.1.1.2 廣義梯度近似法 (Generalized gradient approximations, GGA) 16
2.1.2 VASP贋勢 (VASP Pseudopotential) 17
2.1.3 平面波投影法(Projected Augmented Waves, PAW) 17
2.2 分子動力學 (Molecular dynamics) 18
2.2.1 古典分子動力學(Classical molecular dynamics) 18
2.2.2 第一原理分子動力學(Ab-initio Molecular Dynamics, AIMD) 18
第三章 理論模擬計算建模及步驟 20
3.1 VASP計算設定 20
3.1.1 POSCAR設定 20
3.1.2 INCAR設定 20
3.1.3 KPOINTS設定 20
3.2 尺寸效應與表面能計算 21
3.3 尺寸效應與界面能計算 21
3.4 應力效應計算 22
3.5 能帶排列(band alignment) 22
3.6 缺陷形成能計算 22
3.7 溫度壓力對缺陷影響 23
第四章 結果與討論 27
4.1 氧化錫結構 27
4.2 尺寸效應與表面能計算結果 27
4.3 尺寸效應與界面能計算結果 29
4.4 應力效應計算結果 29
4.5 能帶排列(band alignment)計算結果 30
4.6 缺陷形成能計算結果 30
4.7 溫度壓力對缺陷影響結果 31
第五章 結論與未來展望 54
參考文獻 55
[1] S. Salahuddin, K. Ni, S. Datta, "The era of hyper-scaling in electronics" Nat. Electron. 1, 442−450 (2018)
[2] A. Charnas, M. W. Si, Z. H. Lin, P. D. Ye, "Enhancement-mode atomic-layer thin In2O3 transistors with maximum current exceeding 2 A/mm at drain voltage of 0.7 V enabled by oxygen plasma treatment" Appl. Phys. Lett. 118, 052107 (2021)
[3] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "P-Channel Thin-Film Transistor Using P-Type Oxide Semiconductor, SnO" Appl. Phys. Lett. 93, 032113 (2008)
[4] E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. K. Park, C. S. Hwang, R. Martins, "Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing" Appl. Phys. Lett. 97, 052105 (2010)
[5] M. Si, Y. Hu, Z. Lin, X. Sun, A. Charnas, D. Zheng, X. Lyu, H. Wang, H. Wang, K. Cho, P.D. Ye "Why In2o3 Can Make 0.7 Nm Atomic Layer Thin Transistors" Nano Lett. 26, 500−506 (2020)
[6] C. Sun, K. Han, S. Samanta, Q. Kong, J. Zhang, H. Xu, et al., "First demonstration of BEOL-compatible ferroelectric TCAM featuring a-IGZO fe-TFTs with large memory window of 2.9 V scaled channel length of 40 nm and high endurance of 108 cycles", Proc. Symp. VLSI Technol., pp. 1-2, Jun. (2021)
[7] C. Sun et al., "Computational associative memory with amorphous metal-oxide channel 3D NAND-compatible floating-gate transistors", Adv. Electron. Mater., vol. 8, no. 12, Dec. (2022)
[8] Z. Zhao et al., "Computational associative memory based on monolithically integrated metal-oxide thin film transistors for update-frequent search applications", IEDM Tech. Dig., pp. 37.6.1-37.6.4, Dec. (2021)
[9] I.-J. Kim, M.-K. Kim, J.-S. Lee, "Design Strategy to Improve Memory Window in Ferroelectric Transistors With Oxide Semiconductor Channel". IEEE Electron Device Lett. 44, 249–252 (2022)
[10] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, "Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4", Thin Solid Films 486 (1-2) 38-41 (2005)
[11] H.-W. Zan, W.-W. Tsai, C.-H. Chen, C.-C. Tsai, "Effective mobility enhancement by using nanometer dot doping in amorphous IGZO thin-film transistors", Adv. Mater. 23, 4237–4242 (2011)
[12] Y.-H. Lin and J.-C. Chou, "Temperature effects on a-IGZO thin film transistors using HfO2 gate dielectric material," J. Nanomaterials, 1–5 (2014)
[13] Z. Wang, P. K. Nayak, J. A. Caraveo-Frescas, H. N. Alshareef, "Recent Developments in p-Type Oxide Semiconductor Materials and Devices" Adv. Mater. 28, 3831−3892 (2016)
[14] Y. Li et al., "Complementary integrated circuits based on p-type SnO and n-type IGZO thin-film transistors", IEEE Electron Device Lett., vol. 39, no. 2, pp. 208-211, Feb. (2018)
[15] E. Fortunato, P. Barquinha, and R. Martins, “Oxide semiconductor thin-film transistors: A review of recent advances,” Adv. Mater., vol. 24, no. 22, pp. 2945–2986, Jun. (2012)
[16] Sharp Begins Production of World’s First LCD Panels Incorporating IGZO Oxide, https://global.sharp/corporate/news/120413.html (accessed: March 2024).
[17] Developing 5th generation IGZO*2- Full expansion from mobile to large panel size, https://corporate.jp.sharp/news/190424-a.html (accessed: March 2024).
[18] J. Shi, J. Zhang, L. Yang, M. Qu, D. Qi and K. H. L. Zhang, "Wide bandgap oxide semiconductors: From materials physics to optoelectronic devices", Adv. Mater., vol. 33, no. 50, Dec. (2021)
[19] M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, and G. Wagner, "Editors’ Choice—Si- and Sn-Doped Homoepitaxial β-Ga2O3 Layers Grown by MOVPE on (010)-Oriented Substrates", ECS J. Solid State Sci. Technol., vol. 6, no. 2, pp. Q3040–Q3044 (2017)
[20] S. Müller, H. von Wenckstern, D. Splith, F. Schmidt, and M. Grundmann, "Control of the conductivity of Si-doped β-Ga2O3 thin films via growth temperature and pressure: Control of the conductivity of Si-doped β-Ga2O3 thin films", Phys. Status Solidi A, vol. 211, no. 1, pp. 34–39, Jan. (2014)
[21] S. Cui, Z. Mei, Y. Zhang, H. Liang, and X. Du, "Room-Temperature Fabricated Amorphous Ga2O3 High-Response-Speed Solar-Blind Photodetector on Rigid and Flexible Substrates", Advanced Optical Materials, vol. 5, no. 19, p. 1700454, Oct. (2017)
[22] J. Kim et al., "Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor", NPG Asia Mater, vol. 9, no. 3, pp. e359–e359, Mar. (2017)
[23] J. Sun, A. Lu, L. Wang, Y. Hu, Q. Wan, "High-mobility transparent thin-film transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature", Nanotechnology, vol. 20, p. 335204 (2009)
[24] J. Jang, R. Kitsomboonloha, S. L. Swisher, E. S. Park, H. Kang, V. Subramanian, "Transparent High-performance thin film transistors from solution-processed SnO2/ZrO2 gel-like precursors", Adv. Mater., vol. 25, pp. 1042-1047 (2013)
[25] B. Jang et al., "High performance ultrathin SnO2 thin-film transistors by sol–gel method", IEEE Electron Device Lett., vol. 39, no. 8, pp. 1179-1182, Aug. (2018)
[26] H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, H. Hosono, "Fabrication and photo response of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO", Appl. Phys. Lett. 83, 1029 (2003)
[27] H. Shimotani, H. Suzuki, K. Ueno, M. Kawasaki, Y. Iwasa, "p-Type field-effect transistor of NiO with electric double-layer gating", Appl. Phys. Lett. 92, 242107 (2008)
[28] J. Jiang, X. Wang, Q. Zhang, J. Li, X. Zhang, "Thermal oxidation of Ni films for p-type thin-film transistors", Phys. Chem. Chem. Phys. 15, 6875–6878 (2013)
[29] Y. Chen, Y. Sun, X. Dai, B. Zhang, Z. Ye, M. Wang, H. Wu, "Tunable electrical properties of NiO thin films and p-type thin-film transistors", Thin Solid Films. 592, 195–199 (2015)
[30] H.A. Al-Jawhari, "A review of recent advances in transparent p-type Cu2O-based thin film transistors" Materials Science in Semiconductor Processing, Volume 40, Pages 241-252, December (2015)
[31] J. Li, Z.Mei, L. Liu, H. Liang, A. Azarov, A. Kuznetsov, Y. Liu, A. Ji, Q. Meng, X. Du, "Probing Defects in Nitrogen-Doped Cu2O", Scientific Reports, 4, 7240 (2014)
[32] Y. Hu, D. Schlom, S. Datta, K. Cho, "Interlayer Engineering of Band Gap and Hole Mobility in p-Type Oxide SnO", ACS Appl. Mater. Interfaces, 14, 25670– 25679, (2022)
[33] Y. Hu, J. Hwang, Y. Lee, P. Conlin, D. G. Schlom, S. Datta ; K. Cho, "First Principles Calculations of Intrinsic Mobilities in Tin-Based Oxide Semiconductors SnO, SnO2, and Ta2SnO6. J. Appl. Phys. 126, 185701 (2019)
[34] L.-T. Nguyen and G. Makov, "High-Pressure Phases of SnO and PbO: A Density Functional Theory Combined with an Evolutionary Algorithm Approach", Materials, 14, 6552 (2021)
[35] R. Batra, H.-D. Tran, R. Ramprasad, "Stabilization of metastable phases in hafnia owing to surface energy effects", Appl. Phys. Lett. 108, 172902 (2016)
[36] R. Materlik, C. Künneth, A. Kersch, "The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model", J. Appl. Phys. 117, 134109 (2015)
[37] R. Batra, T.-D. Huan, J. L. Jones, G. Rossetti, Jr., R. Ramprasad, "Factors Favoring Ferroelectricity in Hafnia: A First-Principles Computational Study", J. Phys. Chem. C, 121, 4139–4145 (2017)
[38] N. Tiwari, A. Nirmal, M.-R. Kulkarni, R.-A. John, N. Mathews, "Enabling high performance n-type metal oxide semiconductors at low temperatures for thin film transistors". Inorg. Chem. Front., 7, 1822–1844 (2020)
[39] Y. Zhu, Y. He, S. Jiang, L. Zhu, C. Chen, Q. Wan, "Indium–gallium–zinc–oxide thin-film transistors: Materials, devices, and applications", J. Semicond. 42 031101 (2021)
[40] Masataka Higashiwaki et al., "Recent progress in Ga2O3 power devices", Semicond. Sci. Technol. 31, 034001 (2016)
[41] A.-M. Ganose, D.-O. Scanlon, "Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics" J. Mater. Chem. C, 4, 1467-1475 (2016)
[42] J. Robertson, Z. Zhang, "Doping limits in p-type oxide semiconductors", MRS Bulletin, Volume 46, pages 1037–1043, (2021)
[43] W. Zhou, N. Umezawa, "Band gap engineering of bulk and nanosheet SnO: Insight into the interlayer Sn-Sn lone pair interactions", Phys. Chem. Chem. Phys., 17, 17816-17820 (2015)
[44] P. Geerlings, F. De Proft, W. Langenaeker, "Conceptual Density Functional Theory", Chem. Rev., 103, 5, 1793–1874 (2003)
[45] C. Stampfl et al., "Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations", Phys. Rev. B 63, 155106 (2001)
[46] M. Lazzeri et al., "Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite", Phys. Rev. B 78, 081406(R) (2008)
[47] P. Schwerdtfeger et al., "The accuracy of the pseudopotential approximation. III. A comparison between pseudopotential and all-electron methods for Au and AuH", J. Chem. Phys. 113, 7110–7118 (2000)
[48] Introduction to Molecular Dynamics, https://slideplayer.com/slide/13497704 (accessed: March 2024).
[49] G. Kresse, J. Furthmüller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set" Phys. Rev. B, 54, 11169–11186 (1996)
[50] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, J. G. Ángyán, "Screened hybrid density functionals applied to solids", J. Chem. Phys. 124, 154709 (2006).
[51] Y. Hu, D. Schlom, S. Datta, K. Cho, "Amorphous Ta2SnO6: A hole-dopable p-type oxide", Applied Surface Science, 613, 155981 (2023)
[52] K. Reuter, M. Scheffler, "Composition, structure, and stability of RuO2(110) as a function of oxygen pressure", PHYSICAL REVIEW B, VOLUME 65, 035406 (2001)
[53] J. Robertson and S. J. Clark, "Limits to doping in oxides", Phys. Rev. B, 83, 075205 (2011)
[54] G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze1, "Identification and design principles of low hole effective mass p-type transparent conducting oxides", Nature Communications volume 4, Article number: 2292 (2013)
[55] M. Barone et al., "Growth of Ta2SnO6 Films, a Candidate Wide-Band-Gap p‑Type Oxide", J. Phys. Chem. C, 126, 3764–3775 (2022)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top