跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 19:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁浩昀
研究生(外文):Hao-Yun Weng
論文名稱:應用於第五代和第六代無線通訊之互補式金氧半導體堆疊式與連續 B 類模式功率放大器之研製
論文名稱(外文):Implementations of CMOS Stacked and Continuous Class B Mode Power Amplifiers for 5G and 6G Wireless Communications
指導教授:邱煥凱
指導教授(外文):Hwann-Kaeo Chiou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:140
中文關鍵詞:功率放大器差動堆疊式第五代和第六代無線通訊
外文關鍵詞:Power Amplifierdifferential stacked5th and 6th generation communication system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文使用台灣積體電路製造股份有限公司 (tsmcTM) 0.18-µm CMOS製程,設計應用於第五代和第六代通訊的三顆晶片,此三顆晶片分別為應用於n77頻段之差動堆疊式功率放大器、應用於X頻段之差動堆疊式功率放大器、應用於X頻段之連續B類堆疊式功率放大器。
第二章分成兩部份:第一顆晶片為應用於n77頻段之兩級差動堆疊式功率放大器,此設計採用基於磁耦合變壓器之堆疊式架構,同時使用電阻式自偏壓方法減少電路不穩定性和複雜性。量測結果顯示在n77頻段內最大傳輸增益為13.39 dB,操作頻帶為3.6 ~ 4.4 GHz,頻帶飽和輸出功率為22 ~ 23.1 dBm,1-dB增益壓縮點輸出功率為12.9 ~ 14.9 dBm,最高功率附加效率為6.9 ~ 9.3 %,晶片面積為3.77 mm2 (2.85 mm×1.32 mm)。第二顆晶片為應用於X頻段之兩級差動堆疊式功率放大器,此設計採用基於磁耦合變壓器之堆疊式架構,使用獨立閘極電壓,操作頻帶為7.7 ~ 8.3 GHz,最大傳輸增益為12.2 dB,頻帶飽和輸出功率為20.2 ~ 22.6 dBm,最高功率附加效率為6.2 ~ 8.6 %,1-dB增益壓縮點之輸出功率為13.6 ~ 15.6 dBm,晶片面積為2.1 mm2 (2.08 mm×1.02 mm)。
第三章的第三顆晶片為應用於X頻段之兩級連續B類堆疊式功率放大器,此設計輸出利用輸出端共振腔達到二倍頻開路之效果,以抑制二次諧波和增加頻寬。在功率級堆疊式電晶體間加入一米勒電容以達到特性的最佳化,其操作頻寬包含的頻段為6.2 – 7.8 GHz,最大傳輸增益為12.5 dB,頻帶飽和輸出功率為20.3 ~ 22.6 dBm,最高功率附加效率約為8.7 ~ 14.5 %,1-dB增益壓縮點之輸出功率為14.5 ~ 16.2 dBm,晶片面積為1.85 mm2 (1.61 mm × 1.15 mm)。
This thesis proposed three power amplifiers (PAs) which were designed and fabricated in in tsmcTM 0.18-µm CMOS technologies to design three chips for 5th and 6th generation communication system applications. These three chips are a differential stack power amplifier for n77 band, a differential stack power amplifier for X band, and a continuous mode class B stack power amplifier for X band.
Chapter 2 is divided into two parts. The first chip presents a two-stage differential stacked power amplifier for n77 band. This design adopts a stacked structure based on magnetically coupled transformers, and uses resistive self-biasing to reduce circuit instability and complexity. The measurement results show that the maximum power gain in the n77 band is 13.39 dB, the operating band is 3.6 ~ 4.4 GHz, the saturation output power is 22 ~ 23.1 dBm, the 1-dB gain compression point output power is 12.9 ~ 14.9 dBm, the maximum PAE is 6.9 ~ 9.3%, and the chip area is 3.77 mm2 (2.85 mm × 1.32 mm). The second chip presents a two-stage differential stacked power amplifier for X-band. This design adopts a stacked structure based on magnetically coupled transformers and uses independent gate voltages. The operating band is 7.7 ~ 8.3 GHz, the maximum power gain is 12.2 dB, the band saturation output power is 20.2 ~ 22.6 dBm, the maximum PAE is 6.2 ~ 8.6 %, the output power at 1-dB gain compression point is 13.6 ~ 15.6 dBm, and the chip area is 2.1 mm2 (2.08 mm×1.02 mm).
In Chapter 3, the third chip presents a two-stage continuous class-B stacked power amplifier for X-band. The output of this design uses the resonator at the output port to achieve a dual-frequency open circuit effect to suppress the second harmonic and increase the bandwidth. A Miller capacitor is added between the power stage stacked transistors to optimize the characteristics. Its operating bandwidth includes 6.2 – 7.8 GHz, the maximum power gain is 12.5 dB, the band saturation output power is 20.3 ~ 22.6 dBm, the highest PAE is about 8.7 ~ 14.5 %, and the output power at the 1-dB gain compression point is 14.5 ~ 16.2 dBm. The chip area is 1.85 mm2 (1.61 mm × 1.15 mm).
摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 1
1-3 章節簡介 2
第二章 應用於5G和6G通訊之CMOS差動互補式功率放大器 3
2-1 研究現況 3
2-2 功率放大器簡介 5
2-3 堆疊功率放大器介紹 8
2-4 磁耦合變壓器共振腔介紹 10
2-5 應用於n77頻段差動堆疊式功率放大器 11
2-5-1 電路架構圖 11
2-5-2 電晶體尺寸選擇與自偏壓 13
2-5-3 功率級單元和輸出端匹配設計 15
2-5-4 驅動級單元和級間匹配設計 22
2-5-5 輸入端匹配設計 28
2-5-6 電路模擬與量測結果 31
2-5-7 結果比較與討論 44
2-6 應用於X頻段兩級差動堆疊式功率放大器 51
2-6-1 電路架構圖 51
2-6-2 選擇偏壓抑制諧波 53
2-6-3 功率級單元和輸出端匹配 54
2-6-4 驅動級單元和級間匹配設計 61
2-6-5 輸入端匹配設計 67
2-6-6 電路模擬與量測結果 70
2-6-7 結果比較與討論 83
第三章 應用於6G通訊之連續B類堆疊式功率放大器 90
3-1 研究現況 90
3-2 連續模式技術介紹 92
3-3 應用於X頻段連續B類堆疊式功率放大器 96
3-3-1 電路架構圖 96
3-3-2 功率級單元和輸出匹配電路設計 98
3-3-3 輸入匹配電路設計 105
3-3-4 電路模擬與量測結果 108
3-3-5 結果比較與討論 115
第四章 結論 117
4-1 總結 117
4-2 未來方向 118
參考文獻 119
[1] Samsung ''6G Spectrum: Expanding the Frontier," pp.8-16, May 2022.
[2] C. Zhuang, Z. Peize and P. Sofie. "6G wireless communications in 7-24 GHz band: Opportunities, techniques, and challenges." arXiv preprint arXiv:2310.06425, 2023.
[3] Z. Wang, H. Wang and P. Heydari, “CMOS power-amplifier design perspectives for 6G wireless communications,” in Proc. IEEE Int. Midwest Symp. Circuits Syst. (MWSCAS), pp. 753–756, Aug. 2021.
[4] B. -H. Ku, S. -H. Baek and S. Hong, “A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, June 2011.
[5] Z. Ma and S. Mohammadi. "A reliable 5G stacked power amplifier in 45 nm CMOS technology," 2023 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications. IEEE, 2023.
[6] H. Alsuraisry, J. Cheng, S. Luo, W. Lin, J. Tsai and T. Huang, "A 24-GHz transformer-based stacked-FET power amplifier in 90-nm CMOS technology," 2015 Asia-Pacific Microwave Conference, Nanjing, China, 2015.
[7] Y. -C. Lee, T. -Y. Chen and J. Y. -C. Liu, "An adaptively biased stacked power amplifier without output matching network in 90-nm CMOS," IEEE International Microwave Symposium (IMS), pp. 1667-1690, June 2017.
[8] T. Kim, and C. Park, "Ka-band three-stacked CMOS power amplifier with LC shunt-feedback to enhance gain and stability," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 4, pp. 1969-1973, August 2009.
[9] T. Sadakiyo and H. Kanaya, "Development of highly efficient push-pull power amplifier with center tapped transformer for 5 GHz application," IEEE 19th Electronics Packaging Technology Conference (EPTC), Singapore, 2017, pp. 1-4.
[10] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Boston, MA: Artech, 2006.
[11] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[12] J. A. Jayamon, J. F. Buckwalter and P. M. Asbeck, "Multigate-cell stacked FET design for millimeter-wave CMOS power amplifiers," IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 2027-2039, Sept. 2016.
[13] J. Park, S. Kang, S. Hong, "Design of a Ka-Band Cascode Power Amplifier Linearized With Cold-FET Interstage Matching Network, " IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 2, pp. 1429-1438, Dec. 2020.
[14] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A full Ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[15] H. -F. Wu, Q. -F. Cheng, X. -G. Li and H. -P. Fu, "Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
[16] F. Wang and H. Wang, "A broadband linear ultra-compact mm-wave power amplifier with distributed-balun output network: analysis and design," IEEE Journal of Solid-State Circuits, vol. 56, no. 8, pp. 2308-2323, Aug. 2021.
[17] S. Wong, S. Maisurah, M. N. Osman, F. Kung and J. See, "High efficiency CMOS power amplifier for 3 to 5 GHz ultra-wideband (UWB) application," IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1546-1550, August 2009.
[18] P. Huang, Z. Tsai, K. Lin and H. Wang, "A high-efficiency, broadband CMOS power amplifier for cognitive radio applications," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3556-3565, Dec. 2010.
[19] B. Ku, S. Baek and S. Hong, "A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1599-1609, June 2011.
[20] T. Yao et al., "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[21] Behzab Razavi, "RF Micrielectronics, "Second Edition.
[22] S. A. Z. Murad, R. K. Pokharel, A. I. A. Galal, R. Sapawi, H. Kanaya and K. Yoshida, "An excellent gain flatness 3.0–7.0 GHz CMOS PA for UWB applications," IEEE Microwave and Wireless Components Letters, vol. 20, no. 9, pp. 510-512, Sept. 2010.
[23] V. Trinh, H. Nam and J. Park, "A 20.5-dBm X -Band Power Amplifier With a 1.2-V Supply in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 234-236, March 2019.doi: 10.1109/LMWC.2018.2885305
[24] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers, " IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 665–667, Oct. 2009.
[25] Y. Dong, L. Mao and S. Xie, "Fully integrated class-J power amplifier in standard CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 64-66, Jan. 2017.
[26] S. Rezaei, L. Belostotski, F. M. Ghannouchi and P. Aflaki, "Integrated Design of a Class-J Power Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1639-1648, April 2013.
[27] K. K. Sessou and N. M. Neihart, "An integrated 700–1200-MHz class-F PA with tunable harmonic terminations in 0.13-μm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 1315-1323, April 2015.
[28] G. R. Nikandish, R. B. Staszewski and A. Zhu, "A Fully Integrated Reconfigurable Multimode Class-F2,3 GaN Power Amplifier," in IEEE Solid-State Circuits Letters, vol. 3, pp. 270-273, 2020.
[29] P. Wright, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Trans. Microwave Theory Techniques, vol. 57, no. 12, pp. 3196–3204, Dec. 2009.
[30] V. Carrubba et al., “The continuous class-F mode power amplifier,” in Proc. Eur. Microw. Conf., pp. 1674–1677., Sep. 2010.
[31] J. H. Kim, S. J. Lee, B. H. Park, S. H. Jang, J. H. Jung, and C. S. Park, “Analysis of high-efficiency power amplifier using second harmonic manipulation: Inverse class-F/J amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2024–2036, Aug. 2011.
[32] J. -K. Nai, Y. -H. Hsiao, Y. Wang, F. Chen and H. Wang, "5-GHz transformer combined class-F−1 power amplifier, " in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, Taiwan, 2016, pp. 1-3.
[33] 陳冠州,「應用於 n77 頻段之氮化鎵/砷化鎵積體被動元件多悌功率放大器暨使用 B 類連續技術於 C/Ka頻帶氮化鎵/砷化鎵功率放大器之研製」,國立中央大學,碩士論文,民國110年。
[34]羅時凱,「應用於第五代通訊之B類連續模式氮化鎵功率放大器暨互補式金氧半導體堆疊式功率放大器之研製」,國立中央大學,碩士論文,民國111年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 應用於第五代行動通訊 FR1 頻段小型基地站之連續模式與多悌氮化鎵單晶與準單晶微波積體電路功率放大器之研製
2. 應用於第五代無線通訊之採用電流合成暨變壓器耦合技術互補式金氧半導體功率放大器研製
3. 應用於5G系統毫米波頻段升降頻模組及使用連續模式技術高功率放大器之研製
4. 應用於第五代無線通訊之結合Cold-FET預失真線性化電路互補式金氧半導體堆疊式功率放大器暨25%責任週期I/Q發射機研製
5. n79頻段之氮化鎵連續F類功率放大器暨Ka頻帶之反F類砷化鎵功率放大器之研製
6. 以粒子群最佳化演算法實現無線通訊 最大覆蓋範圍之節點位置設計
7. 具有改良匹配電感設計之SAW濾波器進階模組之研發
8. 應用於無線通訊之壓電式微機電振盪器設計與開發
9. 應用於5G通訊之緊湊型F類氮化鎵Doherty功率放大器暨諧波控制電路
10. 離散傅立葉轉換擴展正交分頻多工技術之太赫茲無線通訊系統
11. 應用於第五代行動通訊之穿戴裝置天線與具梯形導波器準八木毫米波相位陣列天線設計
12. 適用於不同無線通訊應用場景之場型可重置天線設計
13. 使用100-nm GaAs pHEMT 與 90-nm CMOS 製程之 Q 頻段功率放大器與全通相位偏移器
14. 使用 90-nm CMOS 與 100-nm GaAs pHEMT 製程之 Q 頻段與 E 頻段功率放大器
15. 使用 90-nm CMOS 與 100-nm GaAs pHEMT 製程之 Q 頻段與 E 頻段低雜訊放大器